ﻻ يوجد ملخص باللغة العربية
We present a scanning tunneling microscopy (STM) study of a gently-graphitized 6H-SiC(0001) surface in ultra high vacuum. From an analysis of atomic scale images, we identify two different kinds of terraces, which we unambiguously attribute to mono- and bilayer graphene capping a C-rich interface. At low temperature, both terraces show $(sqrt{3}times sqrt{3})$ quantum interferences generated by static impurities. Such interferences are a fingerprint of $pi$-like states close to the Fermi level. We conclude that the metallic states of the first graphene layer are almost unperturbed by the underlying interface, in agreement with recent photoemission experiments (A. Bostwick et al., Nature Physics 3, 36 (2007))
We have analyzed by Scanning Tunnelling Microscopy (STM) thin films made of few (3-5) graphene layers grown on the C terminated face of 6H-SiC in order to identify the nature of the azimuthal disorder reported in this material. We observe superstruct
In this study, we first show that the argon flow during epitaxial graphene growth is an important parameter to control the quality of the buffer and the graphene layer. Atomic force microscopy (AFM) and low-energy electron diffraction (LEED) measurem
Monolayer graphene epitaxially grown on SiC(0001) was etched by H-plasma and studied by scanning tunneling microscopy and spectroscopy. The etching created partly hexagonal nanopits of monatomic depth as well as elevated regions with a height of abou
The electronic and crystallographic structure of the graphene/Rh(111) moire lattice is studied via combination of density-functional theory calculations and scanning tunneling and atomic force microscopy (STM and AFM). Whereas the principal contrast
This paper has been withdrawn due to the adherance to the double submission policies of a refereed journal. Our apologies.