ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic vortex oscillator driven by dc spin-polarized current

83   0   0.0 ( 0 )
 نشر من قبل Vlad Pribiag
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer of angular momentum from a spin-polarized current to a ferromagnet provides an efficient means to control the dynamics of nanomagnets. A peculiar consequence of this spin-torque, the ability to induce persistent oscillations of a nanomagnet by applying a dc current, has previously been reported only for spatially uniform nanomagnets. Here we demonstrate that a quintessentially nonuniform magnetic structure, a magnetic vortex, isolated within a nanoscale spin valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized dc current. Comparison to micromagnetic simulations leads to identification of the oscillations with a precession of the vortex core. The oscillations, which can be obtained in essentially zero magnetic field, exhibit linewidths that can be narrower than 300 kHz, making these highly compact spin-torque vortex oscillator devices potential candidates for microwave signal-processing applications, and a powerful new tool for fundamental studies of vortex dynamics in magnetic nanostructures.



قيم البحث

اقرأ أيضاً

We investigate vortex configuration in antiferromagnetic thin discs. It is shown that the vortex acquires oscillatory dynamics with well-defined amplitude and frequency which may be controlled on demand by an alternating spin polarized current. These findings may be useful for the emerging field of antiferromagnetic topological spintronics, once vortex dynamics may be controlled by purely electric means.
157 - Stavros Komineas 2012
A vortex-antivortex (VA) dipole may be generated due to a spin-polarized current flowing through a nano-aperture in a magnetic element. We study the vortex dipole dynamics using the Landau-Lifshitz equation in the presence of an in-plane applied magn etic field and a Slonczewski spin-torque term with in-plane polarization. We establish that the vortex dipole is set in steady state rotational motion. The frequency of rotation is due to two independent forces: the interaction between the two vortices and the external magnetic field. The nonzero skyrmion number of the dipole is responsible for both forces giving rise to rotational dynamics. The spin-torque acts to stabilize the vortex dipole motion at a definite vortex-antivortex separation distance. We give analytical and numerical results for the angular frequency of rotation and VA dipole features as functions of the parameters.
The reflectivity of a highly localized magnetic inhomogeneity is experimentally studied. The inhomogeneity is created by a dc-current carrying wire placed on the surface of a ferrite film. The reflection of propagating dipole-dominated spin-wave puls es is found to be strongly dependent on the spin-wave frequency if the current locally increases the magnetic field. In the opposite case the frequency dependence is negligible.
198 - Y.-T. Cui , J. C. Sankey , C. Wang 2008
The torque generated by the transfer of spin angular momentum from a spin-polarized current to a nanoscale ferromagnet can switch the orientation of the nanomagnet much more efficiently than a current-generated magnetic field, and is therefore in dev elopment for use in next-generation magnetic random access memory (MRAM). Up to now, only DC currents and square-wave current pulses have been investigated in spin-torque switching experiments. Here we present measurements showing that spin transfer from a microwave-frequency pulse can produce a resonant excitation of a nanomagnet and lead to improved switching characteristics in combination with a square current pulse. With the assistance of a microwave-frequency pulse, the switching time is reduced and achieves a narrower distribution than when driven by a square current pulse alone, and this can permit significant reductions in the integrated power required for switching. Resonantly excited switching may also enable alternative, more compact MRAM circuit architectures.
538 - Keisuke Yamada 2008
In a ferromagnetic nanodisk, the magnetization tends to swirl around in the plane of the disk and can point either up or down at the center of this magnetic vortex. This binary state can be useful for information storage. It is demonstrated that a si ngle nanosecond current pulse can switch the core polarity. This method also provides the precise control of the core direction, which constitutes fundamental technology for realizing a vortex core memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا