ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-induced magnetic vortex core switching in a Permalloy nanodisk

101   0   0.0 ( 0 )
 نشر من قبل Riccardo Hertel
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the switching of a magnetic vortex core in a sub-micron Permalloy disk, induced by a short current pulse applied in the film plane. Micromagnetic simulations including the adiabatic and non-adiabatic spin-torque terms are used to investigate the current-driven magnetization dynamics. We predict that a core reversal can be triggered by current bursts a tenth of a nanosecond long. The vortex core reversal process is found to be the same as when an external field pulse is applied. The control of a vortex cores orientation using current pulses introduces the technologically relevant possibility to address individual nanomagnets within dense arrays.



قيم البحث

اقرأ أيضاً

A magnetic vortex is a curling magnetic structure realized in a ferromagnetic disk, which is a promising candidate of a memory cell for future nonvolatile data storage devices. Thus, understanding of the stability and dynamical behaviour of the magne tic vortex is a major requirement for developing magnetic data storage technology. Since the experimental proof of the existence of a nanometre-scale core with out-of-plane magnetisation in the magnetic vortex, the dynamics of a vortex has been investigated intensively. However, the way to electrically control the core magnetisation, which is a key for constructing a vortex core memory, has been lacking. Here, we demonstrate the electrical switching of the core magnetisation by utilizing the current-driven resonant dynamics of the vortex; the core switching is triggered by a strong dynamic field which is produced locally by a rotational core motion at a high speed of several hundred m/s. Efficient switching of the vortex core without magnetic field application is achieved thanks to resonance. This opens up the potentiality of a simple magnetic disk as a building block for spintronic devices like a memory cell where the bit data is stored as the direction of the nanometre-scale core magnetisation.
538 - Keisuke Yamada 2008
In a ferromagnetic nanodisk, the magnetization tends to swirl around in the plane of the disk and can point either up or down at the center of this magnetic vortex. This binary state can be useful for information storage. It is demonstrated that a si ngle nanosecond current pulse can switch the core polarity. This method also provides the precise control of the core direction, which constitutes fundamental technology for realizing a vortex core memory.
We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to remark an interesting phenomenon not yet observed, which is the vortex core switching induced by the vortex-hole interactions. It occurs for the case with only one hole and for very special conditions involving the hole size and position as well as the disk size. Any small deformation in the disk geometry such as the presence of a second antidot changes completely the vortex dynamics and the vortex core eventually falls into one of the defects. After trapped, the vortex center still oscillates with a very high frequency and small amplitude around the defect center.
185 - J. Grollier 2002
We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by el ectron beam lithography. A neck has been defined at 1/3 of the total length of the stripe and is a pinning center for the domain walls, as shown by the steps of the giant magnetoresistance curves at intermediate levels (1/3 or 2/3) between the resistances corresponding to the parallel and antiparallel configurations. We show by electric transport measurements that, once a wall is trapped, it can be moved by injecting a dc current higher than a threshold current of the order of magnitude of 10^7 A/cm^2. We discuss the different possible origins of this effect, i.e. local magnetic field created by the current and/or spin transfer from spin polarized current.
We unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineere d devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction. We can explain these through simulations of the temperature induced strain and we identify the thermomagnetoelastic switching mechanism combined with thermal excitations as the origin, in which the final state is defined by the strain distributions and heat is required to switch the antiferromagnetic domains. We show that such a potentially very versatile non-contact mechanism can explain the previously reported contradicting observations of the switching final state, which were attributed to spin-orbit torque mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا