Van Hove singularity and spontaneous Fermi surface symmetry breaking in Sr3Ru2O7


الملخص بالإنكليزية

The most salient features observed around a metamagnetic transition in Sr3Ru2O7 are well captured in a simple model for spontaneous Fermi surface symmetry breaking under a magnetic field, without invoking a putative quantum critical point. The Fermi surface symmetry breaking happens in both a majority and a minority spin band but with a different magnitude of the order parameter, when either band is tuned close to van Hove filling by the magnetic field. The transition is second order for high temperature T and changes into first order for low T. The first order transition is accompanied by a metamagnetic transition. The uniform magnetic susceptibility and the specific heat coefficient show strong T dependence, especially a log T divergence at van Hove filling. The Fermi surface instability then cuts off such non-Fermi liquid behavior and gives rise to a cusp in the susceptibility and a specific heat jump at the transition temperature.

تحميل البحث