ﻻ يوجد ملخص باللغة العربية
We study the decoherence of two ferro- and antiferromagnetically coupled spins that interact with a frustrated spin-bath environment in its ground state. The conditions under which the two-spin system relaxes from the initial spin-up - spin-down state towards its ground state are determined. It is shown that the two-spin system relaxes to its ground state for narrow ranges of the model parameters only. It is demonstrated that the symmetry of the coupling between the two-spin system and the environment has an important effect on the relaxation process. In particular, we show that if this coupling conserves the magnetization, the two-spin system readily relaxes to its ground state whereas a non-conserving coupling prevents the two-spin system from coming close to its ground state.
We consider the evolution of a quantum state of a Hamiltonian which is parametrically perturbed via a term proportional to the adiabatic parameter lambda (t). Starting with the Pechukas-Yukawa mapping of the energy eigenvalues evolution on a generali
We study the ground state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of
In this paper we calculate the block entanglement entropies of spin models whose ground states have perfect antiferromagnetic or ferromagnetic long-range order. In the latter case the definition of entanglement entropy is extended to properly take in
Without resorting to spin-spin coupling, we propose a scalable spin quantum computing scheme assisted with a semiconductor multiple-quantum-dot structure. The techniques of single electron transitions and the nanostructure of quantum-dot cellular aut
We present a quantum theory of cooling of a mechanical resonator using back-action with constant electron current. The resonator device is based on a doubly clamped nanotube, which mechanically vibrates and acts as a double quantum dot for electron t