We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations then quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.
We study the spin-1 XY model on a hypercubic lattice in $d$ dimensions and show that this well-known nonintegrable model hosts an extensive set of anomalous finite-energy-density eigenstates with remarkable properties. Namely, they exhibit subextensi
ve entanglement entropy and spatiotemporal long-range order, both believed to be impossible in typical highly excited eigenstates of nonintegrable quantum many-body systems. While generic initial states are expected to thermalize, we show analytically that the eigenstates we construct lead to weak ergodicity breaking in the form of persistent oscillations of local observables following certain quantum quenches--in other words, these eigenstates provide an archetypal example of so-called quantum many-body scars. This work opens the door to the analytical study of the microscopic origin, dynamical signatures, and stability of such phenomena.
We introduce a simple model of SO($N$) spins with two-site interactions which is amenable to quantum Monte-Carlo studies without a sign problem on non-bipartite lattices. We present numerical results for this model on the two-dimensional triangular l
attice where we find evidence for a spin nematic at small $N$, a valence-bond solid (VBS) at large $N$ and a quantum spin liquid at intermediate $N$. By the introduction of a sign-free four-site interaction we uncover a rich phase diagram with evidence for both first-order and exotic continuous phase transitions.
We continue recent efforts to discover examples of deconfined quantum criticality in one-dimensional models. In this work we investigate the transition between a $mathbb{Z}_3$ ferromagnet and a phase with valence bond solid (VBS) order in a spin chai
n with $mathbb{Z}_3timesmathbb{Z}_3$ global symmetry. We study a model with alternating projective representations on the sites of the two sublattices, allowing the Hamiltonian to connect to an exactly solvable point having VBS order with the character of SU(3)-invariant singlets. Such a model does not admit a Lieb-Schultz-Mattis theorem typical of systems realizing deconfined critical points. Nevertheless, we find evidence for a direct transition from the VBS phase to a $mathbb{Z}_3$ ferromagnet. Finite-entanglement scaling data are consistent with a second-order or weakly first-order transition. We find in our parameter space an integrable lattice model apparently describing the phase transition, with a very long, finite, correlation length of 190878 lattice spacings. Based on exact results for this model, we propose that the transition is extremely weakly first order, and is part of a family of DQCP described by walking of renormalization group flows.
We study an incommensurate long-range order induced by an external magnetic field in a quasi-one-dimensional bond-alternating spin system, F5PNN, focusing on the role of the frustrating interaction which can be enhanced by a high-pressure effect. On
the basis of the density matrix renormalization group analysis of a microscopic model for F5PNN, we present several H-T phase diagrams for typical parameters of the frustrating next-nearest-neighbour coupling and the interchain interaction, and then discuss how the field-induced incommensurate order develops by the frustration effect in such phase diagrams. A magnetization plateau at half the saturation moment is also mentioned.
The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Remarkably, the spin ices provide one of very few experiment
ally realised examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, the spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterised by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focussing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.