ﻻ يوجد ملخص باللغة العربية
Our Introduction starts with a short general review of the magnetic and structural properties of the Heusler compounds which are under discussion in this book. Then, more specifically, we come to the discussion of our experimental results on multilayers composed of the Heusler alloys Co2MnGe and Co2MnSn with V or Au as interlayers. The experimental methods we apply combine magnetization and magneto-resistivity measurements, x-ray diffraction and reflectivity, soft x-ray magnetic circular dichroism and spin polarized neutron reflectivity. We find that below a critical thickness of the Heusler layers at typically dcr = 1.5 nm the ferromagnetic order is lost and spin glass order occurs instead. For very thin ferromagnetic Heusler layers there are peculiarities in the magnetic order which are unusual when compared to conventional ferromagnetic transition metal multilayer systems. In [Co2MnGe/Au] multilayers there is an exchange bias shift at the ferromagnetic hysteresis loops at low temperatures caused by spin glass ordering at the interface. In [Co2MnGe/V] multilayers we observe an antiferromagnetic interlayer long range ordering below a well defined Neel temperature originating from the dipolar stray fields at the magnetically rough Heusler layer interfaces.
All-Heusler multilayer structures have been investigated by means of high kinetic x-ray photoelectron spectroscopy and x-ray magnetic circular dichroism, aiming to address the amount of disorder and interface diffusion induced by annealing of the mul
Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co$_2$MnZ (Z = Ga, Si, Ge, Sn), Rh$_2$MnZ (Z = Ge, Sn, Pb), Ni$_2$MnS
First-principles calculations are used in order to investigate phonon anomalies in non-magnetic and magnetic Heusler alloys. Phonon dispersions for several systems in their cubic L2$mathrm{_1}$ structure were obtained along the [110] direction. We co
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport
HRTEM, nano-beam electronic diffraction, energy dispersive X-rays scanning spectroscopy, Vibrating Sample Magnetometry (VSM) and FerroMagnetic Resonance (FMR) techniques are used in view of comparing (static and dynamic) magnetic and structural prope