ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Number of Walls on Plasmon Behavior in Carbon Nanotubes

119   0   0.0 ( 0 )
 نشر من قبل Mary Upton
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the physical parameters controlling the low energy screening in carbon nanotubes via electron energy loss spectroscopy and inelastic x-ray scattering. Two plasmon-like features are observed, one near 9 eV (the so-called pi plasmon) and one near 20 eV (the so-called pi+sigma plasmon). At large nanotube diameters, the pi+sigma plasmon energies are found to depend exclusively on the number of walls and not on the radius or chiral vector. The observed shift indicates a change in the strength of the screening and in the effective interaction at inter-atomic distances, and thus this result suggests a mechanism for tuning the properties of the nanotube.



قيم البحث

اقرأ أيضاً

We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupl ing. The exciton absorption lineshapes exhibit the line (Rabi) splitting $~0.1-0.3$ eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube. We expect this effect to open a path to new optoelectronic device applications of semiconducting carbon nanotubes.
171 - G.-P. Tong , Q.-P. Huang 2008
The hybrid orbitals of single-wall carbon nanotubes are given according to the structure of the nanotube. Because the energy levels of these hybrid orbitals are close to each other, the sigma-orbitals will affect the behavior of the pi-electrons, whi ch is called the scattering of pi- electrons. This scattering effect is taken into account in the nanotube and the local wave function of pi-electrons is constructed, which is called the extended Wannier function. In the Wannier representation, the electronic hopping energies and the energy gap of the tubes (9,0) and (9,9) are calculated. Our results show that the band gap of the tubes increases in direct ratio with the scattering coefficients of sigma-orbitals and this scattering is able to enhance the localization of pi-electrons.
Carbon nanotubes provide a rare access point into the plasmon physics of one-dimensional electronic systems. By assembling purified nanotubes into uniformly sized arrays, we show that they support coherent plasmon resonances, that these plasmons enha nce and hybridize with phonons, and that the phonon-plasmon resonances have quality factors as high as 10. Because coherent nanotube plasmonics can strengthen light-matter interactions, it provides a compelling platform for surface-enhanced infrared spectroscopy and tunable, high-performance optical devices at the nanometer scale.
115 - M. Bockrath , D. H. Cobden , J. Lu 1998
An interacting one-dimensional (1D) electron system is predicted to behave very differently than its higher-dimensional counterparts. Coulomb interactions strongly modify the properties away from those of a Fermi liquid, resulting in a Luttinger liqu id (LL) characterized by a power-law vanishing of the density of states at the Fermi level. Experiments on one-dimensional semiconductor wires and fractional quantum Hall conductors have been interpreted using this picture, but questions remain about the connection between theory and experiment. Recently, single-walled carbon nanotubes (SWNTs) have emerged as a new type of 1D conductor that may exhibit LL behavior. Here we present measurements of the conductance of individual ropes of such SWNTs as a function of temperature and voltage. Power law behavior as a function of temperature or bias voltage is observed: G~ T^a and dI/dV ~ V^a. Both the power-law functional forms and the inferred exponents are in good agreement with theoretical predictions for tunneling into a LL.
In cavity quantum electrodynamics, optical emitters that are strongly coupled to cavities give rise to polaritons with characteristics of both the emitters and the cavity excitations. We show that carbon nanotubes can be crystallized into chip-scale, two-dimensionally ordered films and that this new material enables intrinsically ultrastrong emitter-cavity interactions: rather than interacting with external cavities, nanotube excitons couple to the near-infrared plasmon resonances of the nanotubes themselves. Our polycrystalline nanotube films have a hexagonal crystal structure, ~25 nm domains, and a 1.74 nm lattice constant. With this extremely high nanotube density and nearly ideal plasmon-exciton spatial overlap, plasmon-exciton coupling strengths reach 0.5 eV, which is 75% of the bare exciton energy and a near record for room-temperature ultrastrong coupling. Crystallized nanotube films represent a milestone in nanomaterials assembly and provide a compelling foundation for high-ampacity conductors, low-power optical switches, and tunable optical antennas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا