ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between different states in heavy fermion physics

155   0   0.0 ( 0 )
 نشر من قبل Georg Knebel
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Calorimetry experiments under high pressure were used to clarify the interplay between different states such as superconductivity and antiferromagnetism in CeRhIn5, spin density wave and large moment antiferromagnetism in URu2Si2. Evidences are given on the re-entrance of antiferromagnetism under magnetic field in the superconducting phase of CeRhIn5 up to pc = 2.5 GPa where the Neel temperature will collapse in the absence of superconductivity. For URu2Si2 measurements up to 10 GPa support strongly the coexistence of spin density wave and large moment antiferromagnetism at high pressures.



قيم البحث

اقرأ أيضاً

Only few selected examples among the great diversity of anomalous rare earth skutterudite are reviewed. Focus is first given on PrFe4P12 in comparison with URu2Si2. For PrFe4P12, great progress has been made on determining the nature of the order par ameter (OP). A non magnetic order parameter with a multipolar component emerges here while for URu2Si2 the nature of the so-called hidden order remains mysterious. The two systems have several similarities in their temperature--pressure (T, P) and magnetic field--temperature (H, T) phase diagrams, in their spin dynamics, in their nesting character and in their high sensitivity to impurities. Advances on one side must stimulate new views on the other. Besides general considerations on the choice of the OP, a simple basic problem is the treatment of the Kondo coupling in a system with low charge carrier number for the cases of uncompensated and compensated semi-metal. An interesting problem is also the possible decoupling between exciton modes and itinerant carriers.
We grew single crystals of the recently discovered heavy fermion superconductor UTe2, and measured the resistivity, specific heat and magnetoresistance. Superconductivity (SC) was clearly detected at Tsc=1.65K as sharp drop of the resistivity in a hi gh quality sample of RRR=35. The specific heat shows a large jump at Tsc indicating strong coupling. The large Sommerfeld coefficient, 117mJ K-2mol-1 extrapolated in the normal state and the temperature dependence of C/T below Tsc are the signature of unconventional SC. The discrepancy in the entropy balance at Tsc between SC and normal states points out that hidden features must occur. Surprisingly, a large residual value of the Sommerfeld coefficient seems quite robust (gamma_0/gamma ~ 0.5). The large upper critical field Hc2 along the three principal axes favors spin-triplet SC. For H // b-axis, our experiments do not reproduce the huge upturn of Hc2 reported previously. This discrepancy may reflect that Hc2 is very sensitive to the sample quality. A new perspective in UTe2 is the proximity of a Kondo semiconducting phase predicted by the LDA band structure calculations.
The superconducting order parameter of the first heavy-fermion superconductor CeCu2Si2 is currently under debate. A key ingredient to understand its superconductivity and physical properties is the quasiparticle dispersion and Fermi surface, which re mains elusive experimentally. Here we present measurements from angle-resolved photoemission spectroscopy. Our results emphasize the key role played by the Ce 4f electrons for the low-temperature Fermi surface, highlighting a band-dependent conduction-f electron hybridization. In particular, we find a very heavy quasi-two-dimensional electron band near the bulk X point and moderately heavy three-dimensional hole pockets near the Z point. Comparison with theoretical calculations reveals the strong local correlation in this compound, calling for further theoretical studies. Our results provide the electronic basis to understand the heavy fermion behavior and superconductivity; implications for the enigmatic superconductivity of this compound are also discussed.
We report the observation of heavy-fermion superconducitivity in CeCoIn5 at Tc =2.3 K. When compared to the pressure-induced Tc of its cubic relative CeIn3 (Tc ~200 mK), the Tc of CeCoIn5 is remarkably high. We suggest that this difference may arise from magnetically mediated superconductivity in the layered crystal structure of CeCoIn5 .
145 - Tuson Park , H. lee , I. Martin 2011
Anisotropic, spatially textured electronic states often emerge when the symmetry of the underlying crystalline structure is lowered. However, the possibility recently has been raised that novel electronic quantum states with real-space texture could arise in strongly correlated systems even without changing the underlying crystalline structure. Here we report evidence for such texture in the superconducting quantum fluid that is induced by pressure in the heavy-fermion compound CeRhIn5. When long-range antiferromagnetic order coexists with unconventional superconductivity, there is a significant temperature difference between resistively- and thermodynamically-determined transitions into the superconducting state, but this difference disappears in the absence of magnetism. Anisotropic transport behaviour near the superconducting transition in the coexisting phase signals the emergence of textured superconducting planes that are nucleated preferentially along the {100} planes and that appear without a change in crystal symmetry. We show that CeRhIn5 is not unique in exhibiting a difference between resistive and bulk superconducting transition temperatures, indicating that textured superconductivity may be a general consequence of coexisting orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا