ﻻ يوجد ملخص باللغة العربية
A number of interesting properties of graphene and graphite are postulated to derive from the peculiar bandstructure of graphene. This bandstructure consists of conical electron and hole pockets that meet at a single point in momentum (k) space--the Dirac crossing, at energy $E_{D} = hbar omega_{D}$. Direct investigations of the accuracy of this bandstructure, the validity of the quasiparticle picture, and the influence of many-body interactions on the electronic structure have not been addressed for pure graphene by experiment to date. Using angle resolved photoelectron spectroscopy (ARPES), we find that the expected conical bands are distorted by strong electron-electron, electron-phonon, and electron-plasmon coupling effects. The band velocity at $E_{F}$ and the Dirac crossing energy $E_{D}$ are both renormalized by these many-body interactions, in analogy with mass renormalization by electron-boson coupling in ordinary metals. These results are of importance not only for graphene but also graphite and carbon nanotubes which have similar bandstructures.
We present inelastic neutron scattering measurements of the Cairo pentagon lattice magnets Bi$_2$Fe$_4$O$_9$ and Bi$_4$Fe$_5$O$_{13}$F, supported by high field magnetisation measurements of Bi$_2$Fe$_4$O$_9$. Using linear spin wave theory and mean fi
We investigate the properties of the spectral function A(omega,U) of correlated electrons within the Hubbard model and dynamical mean-field theory. Curves of A(omega,U) vs. omega for different values of the interaction U are found to intersect near t
A quantum state is nonclassical if its Glauber-Sudarshan P function fails to be interpreted as a probability density. This quantity is often highly singular, so that its reconstruction is a demanding task. Here we present the experimental determinati
We examine multiple techniques for extracting information from angle-resolved photoemission spectroscopy (ARPES) data, and test them against simulated spectral functions for electron-phonon coupling. We find that, in the low-coupling regime, it is po
We reinvestigate the momentum-resolved single-particle spectral function of the Tomonaga-Luttinger model. In particular, we focus on the role of the momentum-dependence of the two-particle interaction V(q). Usually, V(q) is assumed to be a constant a