ﻻ يوجد ملخص باللغة العربية
We study in detail the predictions of various theoretical approaches, in particular mode-coupling theory (MCT) and kinetically constrained models (KCMs), concerning the time, temperature, and wavevector dependence of multi-point correlation functions that quantify the strength of both induced and spontaneous dynamical fluctuations. We also discuss the precise predictions of MCT concerning the statistical ensemble and microscopic dynamics dependence of these multi-point correlation functions. These predictions are compared to simulations of model fragile and strong glass-forming liquids. Overall, MCT fares quite well in the fragile case, in particular explaining the observed crucial role of the statistical ensemble and microscopic dynamics, while MCT predictions do not seem to hold in the strong case. KCMs provide a simplified framework for understanding how these multi-point correlation functions may encode dynamic correlations in glassy materials. However, our analysis highlights important unresolved questions concerning the application of KCMs to supercooled liquids.
We study theoretically and numerically a family of multi-point dynamic susceptibilities that quantify the strength and characteristic lengthscales of dynamic heterogeneities in glass-forming materials. We use general theoretical arguments (fluctuatio
We analytically and numerically characterize the structure of hard-sphere fluids in order to review various geometrical frustration scenarios of the glass transition. We find generalized polytetrahedral order to be correlated with increasing fluid pa
We consider near-critical two-dimensional statistical systems at phase coexistence on the half plane with boundary conditions leading to the formation of a droplet separating coexisting phases. General low-energy properties of two-dimensional field t
We examined dynamic heterogeneity in a model tetrahedral network glass-forming liquid. We used four-point correlation functions to extract dynamic correlation lengths xi_4^a(t) and susceptibilities chi_4^a(t) corresponding to structural relaxation on
We compare the spatial correlations of bond-breaking events and bond-orientational relaxation in a model two-dimensional liquid undergoing Newtonian dynamics. We find that the relaxation time of the bond-breaking correlation function is much longer t