ﻻ يوجد ملخص باللغة العربية
We demonstrate that an array of metallic nanorods enables sub-wavelength (near-field) imaging at infrared frequencies. Using an homogenization approach, it is theoretically proved that under certain conditions the incoming radiation can be transmitted by the array of nanorods over a significant distance with fairly low attenuation. The propagation mechanism does not involve a resonance of material parameters and thus the resolution is not strongly affected by material losses and has wide bandwidth. The sub-wavelength imaging with $lambda/10$ resolution by silver rods at 30 THz is demonstrated numerically using full-wave electromagnetic simulator.
An experimental investigation of sub-wavelength imaging by a wire medium slab is performed. A complex-shaped near field source is used in order to test imaging performance of the device. It is demonstrated that the ultimate bandwidth of operation of
Inplane magnetization reversal of a permalloy/platinum bilayer was detected using the spin rectification effect. Using a sub GHz microwave frequency to excite spin torque ferromagnetic resonance (ST FMR) in the bilayer induces two discrete DC voltage
Noise measurements have been carried out in the LISA bandwidth (0.1 mHz to 100 mHz) to characterize an all-optical atomic magnetometer based on nonlinear magneto-optical rotation. This was done in order to assess if the technology can be used for spa
We show that interference can be the principle of operation of an all-optical switch and other nanoscale plasmonic interference devices (PIDs). The optical response of two types of planar plasmonic waveguides is studied theoretically: bent chains and
We present a solid state magnetic field imaging technique using a two dimensional array of spins in diamond. The magnetic sensing spin array is made of nitrogen-vacancy (NV) centers created at shallow depths. Their optical response is used for measur