ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural phase transition and magnetism in hexagonal srmno

93   0   0.0 ( 0 )
 نشر من قبل Aziz M. Daoud-Aladine
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structural and magnetic properties of the hexagonal four-layer form of SrMnO$_3$ have been investigated by combining magnetization measurements, electron diffraction and high-resolution synchrotron X-ray and neutron powder diffraction. Below 350K, there is subtle structural phase transition from hexagonal symmetry (space group $P6_3/mmc$) to orthorhombic symmetry (space group $C222_1$) where the hexagonal metric is preserved. The second-order phase transition involves a slight tilting of the corner-sharing Mn$_{2}$O$_{9}$ units composed of 2 face-sharing MnO$_6$ octahedra and the associated displacement of Sr$^{2+}$ cations. The phase transition is described in terms of symmetry-adapted displacement modes of the high symmetry phase. Upon further cooling, long range magnetic order with propagation vector $mathbf{k}=(0,0,0)$ sets in below 300K. The antiferromagnetic structure, analyzed using representation theory, shows a considerably reduced magnetic moment indicating the crucial role played by direct exchange between Mn centers of the Mn$_{2}$O$_{9}$ units.



قيم البحث

اقرأ أيضاً

Hexagonal ferrites do not only have enormous commercial impact ({pounds}2 billion/year in sales) due to applications that include ultra-high density memories, credit card stripes, magnetic bar codes, small motors and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbFe$_{12-x}$Ga$_x$O$_{19}$ to zero by chemical substitution $x$. The phase transition boundary is found to vary as $T_N sim (1-x/x_c)^{2/3}$ with $x_c$ very close to the calculated spin percolation threshold which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally-tuned, insulating, ferrimagnetic quantum criticality. Close to the zero temperature phase transition we observe the emergence of an electric-dipole glass induced by magneto-electric coupling. The strong frequency behaviour of the glass freezing temperature $T_m$ has a Vogel-Fulcher dependence with $T_m$ finite, or suppressed below zero in the zero frequency limit, depending on composition $x$. These quantum-mechanical properties, along with the multiplicity of low-lying modes near to the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.
Structural phase transition accompanying with quadrupolar ordering in DyB4 with Shastry-Sutherland type geometrical frustration has been studied by X-ray diffraction. Previous study [D. Okuyama et al.: J. Phys. Soc. Jpn. 74 (2005) 2434.] using resona nt X-ray scattering revealed short-range ordering of the Ozx-type quadrupolar moments and the c-plane component of the magnetic moments in addition to long-range ordering of the c-axis component of the magnetic moments. The present report focuses on the lattice distortion below the quadrupolar ordering temperature at TN2=12.7 K. The (0 0 l=integer) fundamental lattice reflection splits into four peaks along the h and k directions and the (h=even 0 0) reflection becomes broad along the l direction. This indicates that a structural transition from tetragonal to monoclinic takes place below TN2 together with the ordering of the quadrupolar moments.
147 - Bing Shen , Chaowei Hu , Huibo Cao 2018
Layered pnictide materials have provided a fruitful platform to study various emergent phenomena, including superconductivity, magnetism, charge density waves, etc. Here we report the observation of structural distortion and noncollinear magnetism in layered pnictide EuAg$_4$As$_2$ via transport, magnetization, single crystal X-ray and neutron diffraction data. EuAg$_4$As$_2$ single crystal shows a structural distortion at 120 K, where two sets of superlattice peaks with the propagation vectors of $q_1=pm$(0, 0.25, 0.5) and $q_2=pm$(0.25, 0, 1) emerge. Between 9 K to 15 K, the hexagonal Eu$^{2+}$ sub-lattice enters an unpinned state, with magnetic Bragg reflections pictured as circular-sectors. Below 9 K, it orders in an incommensurate noncollinear antiferromagnetic state with a well-defined propagation wavevector of (0, 0.1, 0.12), where the magnetic structure is helical along the $c$ axis and cycloidal along the $b$ axis with a moment of 6.4 $mu_B$/Eu$^{2+}$. Furthermore, rich magnetic phases under magnetic fields, large magnetoresistance, and strong coupling between charge carriers and magnetism in EuAg$_4$As$_2$ are revealed.
We present a study of the effect of very high pressure on the orthorhombic perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to 53.2 GPa. The experimental results yield a structural and insulator-to-metal phase transition c lose to 50 GPa, from an orthorhombic to a metrically cubic structure. The phase transition is of first order with a pressure hysteresis of about 6 GPa. The observed behavior under very high pressure might well be a general feature in rare-earth manganites.
An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based tw o-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا