ﻻ يوجد ملخص باللغة العربية
We present electronic structure calculations in combination with local and non-local many-body correlation effects for the half-metallic ferromagnet CrO$_2$. Finite-temperature Dynamical Mean Field Theory results show the existence of non-quasiparticle states, which were recently observed as almost currentless minority spin states near the Fermi energy in resonant scattering experients. At zero temperatures, Variational Cluster Approach calculations support the half-metallic nature of CrO$_2$ as seen in superconducting point contact spectroscopy. The combination of these two techniques allowed us to qualitatively describe the spin-polarization in CrO$_2$.
Using high-resolution spin-resolved photoemission spectroscopy, we observed a thermal spin depolarization to which all spin-polarized electrons contribute. Furthermore we observed a distinct minority spin state near the Fermi level and a correspondin
By means of hybrid density functional theory we investigate the evolution of the structural, electronic and magnetic properties of the colossal magnetoresistance (CMR) parent compound LaMnO$_3$ under pressure. We predict a transition from a low press
The origin of successive phase transitions observed in the layered perovskite $alpha$-Sr$_2$CrO$_4$ is studied by the density-functional-theory-based electronic structure calculation and mean-field analysis of the proposed low-energy effective model.
We have investigated the electronic states and spin polarization of half-metallic ferromagnet CrO$_2$ (100) epitaxial films by bulk-sensitive spin-resolved photoemission spectroscopy with a focus on non-quasiparticle (NQP) states derived from electro
The magnetic properties of polycrystalline samples of Ba3Cu3In4O12 (In-334) and Ba3Cu3Sc4O12 (Sc-334) are reported. Both 334 phases have a structure derived from perovskite, with CuO4 squares interconnected to form half-twist ladders along the c-axis