Fractal Dimensions in Switching Kinetics of Ferroelectrics


الملخص بالإنكليزية

Early work by the author with Prof. Ishibashi [Scott et al., J. Appl. Phys. 64, 787 (1988)] showed that switching kinetics in ferroelectrics satisfy a constraint on current transients compatible with d = 2.5 dimensionality. At that time with no direct observations of the domains, it was not possible to conclude whether this was a true Hausdorff dimension or a numerical artefact caused by an approximation in the theory (which ignored the dependence of domain wall velocity upon domain diameter). Recent data suggest that the switching dimensionality is truly fractal with d = 2.5. The critical exponent beta characterizing the order parameter P(T) can be written as a continuous function of dimension d as beta(d)= [ u(d)/2] [d+eta(d)-2], which is exact within hyperscaling; here u and eta are the exponents characterizing the pair correlation function G(r,T) and the structure factor S(q,T). For d=2.5 the estimate is that beta is approximately 1/4.

تحميل البحث