ﻻ يوجد ملخص باللغة العربية
In this paper we revisit the Levy-Perdew-Sahni equation. We establish that the relation implicitly contains the conservation of energy density at every point of the system. The separate contributions to the total energy density are described in detail, and it is shown that the key difference to standard density functional methods is the existence of a general exchange-correlation potential, which does not explicitly depend on electron charge. We derive solutions for the hydrogen-like atoms and analyse local properties. It is found that these systems are stable due to the existence of a vector potential ${bf A}$, related to electron motion, which leads to two general effects: (i) The root of the charge density acquires an additional complex phase; and (ii) for single electrons, the vector potential cancels the effect of electrostatic repulsions. We determine the density of states of a free electron gas based on this model and find that the vectorpotential also accounts for the Pauli exclusion principle. Implications of these results for direct methods in density functional theory are discussed. It seems that the omission of vector potentials in formulating the kinetic energy density functionals may be the main reason that direct methods so far are not generally applicable. Finally, we provide an orbital free self-consistent formulation for determining the groundstate charge density in a local density approximation.
Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory ac
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wav
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular,
An adiabatic-connection fluctuation-dissipation theorem approach based on a range separation of electron-electron interactions is proposed. It involves a rigorous combination of short-range density functional and long-range random phase approximation