ﻻ يوجد ملخص باللغة العربية
The conductance of C60 on Cu(100) is investigated with a low-temperature scanning tunneling microscope. At the transition from tunneling to the contact regime the conductance of C60 adsorbed with a pentagon-hexagon bond rises rapidly to 0.25 conductance quanta G0. An abrupt conductance jump to G0 is observed upon further decreasing the distance between the instruments tip and the surface. Ab-initio calculations within density functional theory and non-equilibrium Greens function techniques explain the experimental data in terms of the conductance of an essentially undeformed C60. From a detailed analysis of the crossover from tunneling to contact we conclude that the conductance in this region is strongly affected by structural fluctuations which modulate the tip-molecule distance.
The orientation of individual C60 molecules adsorbed on Cu(100) is reversibly switched when the tip of a scanning tunneling microscope is approached to contact the molecule. The probability of switching rises sharply upon displacing the tip beyond a
Force and conductance were simultaneously measured during the formation of Cu-C60 and C60-C60 contacts using a combined cryogenic scanning tunneling and atomic force microscope. The contact geometry was controlled with submolecular resolution. The ma
Recent I/V curve measurements suggest that C60 molecules deposited in gold nanojunctions change their adsorption configuration when a finite voltage in a 2-terminal setting is applied. This is of interest for molecular electronics because a robust mo
Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a hetero
Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields. Different device concepts have been predicted and experimentally demonstrated, such as low-temperature AFM