ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Excitations and their energy change available to Superconducting Condensation in Optimally Doped YBa$_2$Cu$_3$O$_{6.95}$

103   0   0.0 ( 0 )
 نشر من قبل Pengcheng Dai
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the magnetic excitations in high-transition temperature (high-$T_c$) copper oxides is important because they may mediate the electron pairing for superconductivity. By determining the wavevector ({bf Q}) and energy ($hbaromega$) dependence of the magnetic excitations, one can calculate the change in the exchange energy available to the superconducting condensation energy. For the high-$T_c$ superconductor YBa$_2$Cu$_3$O$_{6+x}$, the most prominent feature in the magnetic excitations is the resonance. Although the resonance has been suggested to contribute a major part of the superconducting condensation, the accuracy of such an estimation has been in doubt because the resonance is only a small portion of the total magnetic scattering. Here we report an extensive mapping of magnetic excitations for YBa$_2$Cu$_3$O$_{6.95}$ ($T_capprox 93$ K). Using the absolute intensity measurements of the full spectra, we estimate the change in the magnetic exchange energy between the normal and superconducting states and find it to be about 15 times larger than the superconducting condensation energy. Our results thus indicate that the change in the magnetic exchange energy is large enough to provide the driving force for high-$T_c$ superconductivity in YBa$_2$Cu$_3$O$_{6.95}$.



قيم البحث

اقرأ أيضاً

Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the $a$-$b$ plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the $d$-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa$_2$Cu$_3$O$_{7}$ show no signal while a small magnetic intensity is found in YBa$_2$Cu$_3$O$_{6.45}$ that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.
97 - H. A. Mook , Pengcheng Dai , 2001
Neutron Scattering measurements for YBa$_2$Cu$_3$O$_{6.6}$ have identified small magnetic moments that increase in strength as the temperature is reduced below $T^ast$ and further increase below $T_c$. An analysis of the data shows the moments are an tiferromagnetic between the Cu-O planes with a correlation length of longer than 195 AA in the $a$-$b$ plane and about 35 AA along the c-axis. The origin of the moments is unknown, and their properties are discusssed both in terms of Cu spin magnetism and orbital bond currents.
We have probed the Landau levels of nodal quasi-particles by tunneling along a nodal direction of (110) oriented YBa$_2$Cu$_3$O$_{7-x}$ thin films with a magnetic field applied perpendicular to the $CuO_2$ planes, and parallel to the films surface. I n optimally doped films and at low temperature, finite energy nodal states are clearly observed in films thinner than the London penetration depth. Above a well defined temperature the order parameter reverts to a pure emph{d}-wave symmetry.
We measure magnetic quantum oscillations in the underdoped cuprates YBa$_2$Cu$_3$O$_{6+x}$ with $x=0.61$, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprate s has a maximum at $papprox 0.11-0.12$. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-$p$ side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high $p$ side).
75 - B. A. Gray , S. Middey , G. Conti 2016
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In p ursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high $T_c$ superconductor YBa$_2$Cu$_3$O$_7$ (YBCO) and colossal magnetoresistance ferromagnet La$_{0.67}$Ca$_{0.33}$MnO$_3$ (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may response to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of $T_c$ by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا