ترغب بنشر مسار تعليمي؟ اضغط هنا

The Density of States in the Two-Dimensional Electron Gas and Quantum Dots (Ph.D. thesis, Cornell University, January 1991)

57   0   0.0 ( 0 )
 نشر من قبل Raymond Ashoori
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R.C. Ashoori




اسأل ChatGPT حول البحث

This thesis describes capacitance and tunneling experiments performed on two-dimensional electron gas (2DEG) and quantum dot systems. It develops a system of equations that allow determination, by means of capacitance measurements, of the electronic density of states, the electron density, and the chemical potential in a 2DEG. The thesis describes the use of these techniques in the observation of a magnetic field induced energy gap to tunneling in the 2DEG and the single electron addition spectrum in arrays of quantum dots.



قيم البحث

اقرأ أيضاً

Indium antimonide (InSb) two-dimensional electron gases (2DEGs) have a unique combination of material properties: high electron mobility, strong spin-orbit interaction, large Land{e} g-factor, and small effective mass. This makes them an attractive p latform to explore a variety of mesoscopic phenomena ranging from spintronics to topological superconductivity. However, there exist limited studies of quantum confined systems in these 2DEGs, often attributed to charge instabilities and gate drifts. We overcome this by removing the $delta$-doping layer from the heterostructure, and induce carriers electrostatically. This allows us to perform the first detailed study of stable gate-defined quantum dots in InSb 2DEGs. We demonstrate two distinct strategies for carrier confinement and study the charge stability of the dots. The small effective mass results in a relatively large single particle spacing, allowing for the observation of an even-odd variation in the addition energy. By tracking the Coulomb oscillations in a parallel magnetic field we determine the ground state spin configuration and show that the large g-factor ($sim$30) results in a singlet-triplet transition at magnetic fields as low as 0.3 T.
Most proof-of-principle experiments for spin qubits have been performed using GaAs-based quantum dots because of the excellent control they offer over tunneling barriers and the orbital and spin degrees of freedom. Here, we present the first realizat ion of high-quality single and double quantum dots hosted in an InAs two-dimensional electron gas (2DEG), demonstrating accurate control down to the few-electron regime, where we observe a clear Kondo effect and singlet-triplet spin blockade. We measure an electronic $g$-factor of $16$ and a typical magnitude of the random hyperfine fields on the dots of $sim 0.6, mathrm{mT}$. We estimate the spin-orbit length in the system to be $sim 5-10, mu mathrm{m}$, which is almost two orders of magnitude longer than typically measured in InAs nanostructures, achieved by a very symmetric design of the quantum well. These favorable properties put the InAs 2DEG on the map as a compelling host for studying fundamental aspects of spin qubits. Furthermore, having weak spin-orbit coupling in a material with a large Rashba coefficient potentially opens up avenues for engineering structures with spin-orbit coupling that can be controlled locally in space and/or time.
60 - A.M. Rudin , I.L. Aleiner , 1998
We study local density of electron states of a two-dimentional conductor with a smooth disorder potential in a non-quantizing magnetic field, which does not cause the standart de Haas-van Alphen oscillations. It is found, that despite the influence o f such ``classical magnetic field on the average electron density of states (DOS) is negligibly small, it does produce a significant effect on the DOS correlations. The corresponding correlation function exhibits oscillations with the characteristic period of cyclotron quantum $hbaromega_c$.
We study spin transport in the one- and two-electron regimes of parallel-coupled double quantum dots (DQDs). The DQDs are formed in InAs nanowires by a combination of crystal-phase engineering and electrostatic gating, with an interdot tunnel couplin g ($t$) tunable by one order of magnitude. Large single-particle energy separations (up to 10 meV) and $|g^*|$ factors ($sim$10) enable detailed studies of the $B$-field-induced transition from a singlet-to-triplet ground state as a function of $t$. In particular, we investigate how the magnitude of the spin-orbit-induced singlet-triplet anticrossing depends on $t$. For cases of strong coupling, we find values of 230 $mu$eV for the anticrossing using excited-state spectroscopy. Experimental results are reproduced by calculations based on rate equations and a DQD model including a single orbital in each dot.
172 - Likun Shi , Wenkai Lou , F. Cheng 2015
Based on the Born-Oppemheimer approximation, we divide total electron Hamiltonian in a spinorbit coupled system into slow orbital motion and fast interband transition process. We find that the fast motion induces a gauge field on slow orbital motion, perpendicular to electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/In$_{x}$Ga$_{1-x}$As/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of antidot lattices, the band folding caused by superimposed potential leads to formation of minibands and band
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا