ﻻ يوجد ملخص باللغة العربية
The magnetic properties of MnAs epilayers have been investigated for two different substrate orientations: GaAs(100) and GaAs(111). We have analyzed the magnetization reversal under magnetic field at low temperatures, determining the anisotropy of the films. The results, based on the shape of the magnetization loops, suggest a domain movement mechanism for both types of samples. The temperature dependence of the coercivity of the films has been also examined, displaying a generic anomalous reentrant behavior at T$>$200 K. This feature is independent of the substrate orientation and films thickness and may be associated to the appearance of new pinning centers due to the nucleation of the $beta$-phase at high temperatures.
We present an investigation of the magnetic behavior of epitaxial MnAs films grown on GaAs(100). We address the dependence of the magnetic moment, ferromagnetic transition temperature ($T_c$) and magnetocrystalline anisotropy constants on epitaxial c
Part of developing new strategies for fabrications of nanowire structures involves in many cases the aid of metal nanoparticles (NPs). It is highly beneficial if one can define both diameter and position of the initial NPs and make well-defined nanow
We describe a new means for electrically creating spin polarization in semiconductors. In contrast to spin injection of electrons by tunneling through a reverse-biased Schottky barrier, we observe spin accumulation at the metal/semiconductor interfac
The effect of an electric field on the spatial charge and spin profiles of photoelectrons in p+-GaAs is studied as a function of lattice and electron temperature. The charge and spin mobilities of photoelectrons are equal in all conditions and exhibi
The temperature dependence of the electron spin $g$ factor in GaAs is investigated experimentally and theoretically. Experimentally, the $g$ factor was measured using time-resolved Faraday rotation due to Larmor precession of electron spins in the te