ﻻ يوجد ملخص باللغة العربية
Magnetic anisotropies and magnetization reversal properties of the epitaxial Heusler compound Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) deposited on Fe and Cr buffer layers are studied. Both samples exhibit a growth-induced fourfold anisotropy, and magnetization reversal occurs through the formation of stripy domains or 90 degree domains. During rotational magnetometric scans the sample deposited on Cr exhibits about 2 degree sharp peaks in the angular dependence of the coercive field, which are oriented along the hard axis directions. These peaks are a consequence of the specific domain structure appearing in this particular measurement geometry. A corresponding feature in the sample deposited on Fe is not observed.
The thermal magnonic spectra of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) and Co$_2$FeAl were investigated using Brillouin light scattering spectroscopy (BLS). For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 $mu$erg/cm (203 m
Co$_2$FeSi(100) films with L2$_1$ structure deposited onto MgO(100) were studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a maximum contribution of up to 30 mde
We report the structural, magnetic, and magnetocaloric properties of Co$_2$Cr$_{1-x}$Ti$_x$Al ($x=$ 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns alon
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomist
La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single crystal x-ray and neutron dif