ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic anisotropies and magnetization reversal of the Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al Heusler compound

177   0   0.0 ( 0 )
 نشر من قبل Jaroslav Hamrle
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic anisotropies and magnetization reversal properties of the epitaxial Heusler compound Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) deposited on Fe and Cr buffer layers are studied. Both samples exhibit a growth-induced fourfold anisotropy, and magnetization reversal occurs through the formation of stripy domains or 90 degree domains. During rotational magnetometric scans the sample deposited on Cr exhibits about 2 degree sharp peaks in the angular dependence of the coercive field, which are oriented along the hard axis directions. These peaks are a consequence of the specific domain structure appearing in this particular measurement geometry. A corresponding feature in the sample deposited on Fe is not observed.



قيم البحث

اقرأ أيضاً

200 - O. Gaier , J. Hamrle , S. Trudel 2009
The thermal magnonic spectra of Co$_{2}$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) and Co$_2$FeAl were investigated using Brillouin light scattering spectroscopy (BLS). For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 $mu$erg/cm (203 m eV A$^2$), while for Co$_2$FeAl the corresponding values of 1.55 $mu$erg/cm (370 meV A$^2$) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrical profiles of hybridized Damon-Esbach and perpendicular standing spin-wave modes, combined with the optical sensitivity of the BLS signal to the upper side of the CCFA or Co$_2$FeAl film.
Co$_2$FeSi(100) films with L2$_1$ structure deposited onto MgO(100) were studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a maximum contribution of up to 30 mde g, which is the largest QMOKE signal in reflection that has been measured thus far. This large value is a fingerprint of an exceptionally large spin-orbit coupling of second or higher order. The Co$_2$FeSi(100) films exhibit a rather large coercivity of 350 and 70 Oe for film thicknesses of 22 and 98 nm, respectively. Despite the fact that the films are epitaxial, they do not provide an angular dependence of the anisotropy and the remanence in excess of 1% and 2%, respectively.
We report the structural, magnetic, and magnetocaloric properties of Co$_2$Cr$_{1-x}$Ti$_x$Al ($x=$ 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns alon g with Rietveld refinements confirm that the samples are of single phase and possess a cubic structure. Interestingly, magnetic susceptibly measurements indicate a second order phase transition from paramagnetic to ferromagnetic where the Curie temperature (T$_{rm C}$) of Co$_2$CrAl increases from 330~K to 445~K with Ti substitution. Neutron powder diffraction data of the $x=$ 0 sample across the magnetic phase transition taken in a large temperature range confirm the structural stability and exclude the possibility of antiferromagnetic ordering. The saturation magnetization of the $x=$ 0 sample is found to be 8000~emu/mol (1.45~$mu_{rm B}$/{it f.u.}) at 5~K, which is in good agreement with the value (1.35$pm$0.05~$mu_{rm B}$/{it f.u.}) obtained from the Rietveld analysis of the neutron powder diffraction pattern measured at temperature of 4~K. By analysing the temperature dependence of the neutron data of the $x=$ 0 sample, we find that the change in the intensity of the most intense Bragg peak (220) is consistent with the magnetization behavior with temperature. Furthermore, an enhancement of change in the magnetic entropy and relative cooling power values has been observed for the $x=$ 0.25 sample. Interestingly, the critical behavior analysis across the second order magnetic phase transition and extracted exponents ($betaapprox$ 0.496, $gammaapprox$ 1.348, and $deltaapprox$ 3.71 for the $x=$ 0.25 sample) suggest the presence of long-range ordering, which deviates towards 3D Heisenberg type interactions above T$_{rm C}$, consistent with the interaction range value $sigma$.
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomist ic spin-dynamics simulations. Experimentally, we find that the demagnetization time ($tau_{M}$) in films of $mathrm{Co_{2}FeAl}$ is almost independent of varying structural order, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower process of magnetization recovery, specified by $tau_{R}$, is found to occur on picosecond time scales, and is demonstrated to correlate strongly with the Gilbert damping parameter ($alpha$). Our results show that $mathrm{Co_{2}FeAl}$ is unique, in that it is the first material that clearly demonstrates the importance of the damping parameter in the remagnetization process. Based on these results we argue that for $mathrm{Co_{2}FeAl}$ the remagnetization process is dominated by magnon dynamics, something which might have general applicability.
138 - J.-Q. Yan , S. Nandi , B. Saparov 2014
La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single crystal x-ray and neutron dif fraction. La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals show a structural phase transition from a high temperature tetragonal phase to a low-temperature orthorhombic phase at T$_s$,=,125,K. This structural transition is accompanied by an anomaly in the temperature dependence of electrical resistivity, anisotropic magnetic susceptibility, and specific heat. Concomitant with the structural phase transition, the Fe moments order along the emph{a} direction with an ordered moment of 0.7(1),$mu_{textup{B}}$ at emph{T},=,5 K. The low temperature stripe antiferromagnetic structure is the same as that in other emph{A}Fe$_{2}$As$_{2}$ (emph{A},=,Ca, Sr, Ba) compounds. La$_{0.5-x}$Na$_{0.5+x}$Fe$_2$As$_2$ provides a new material platform for the study of iron-based superconductors where the electron-hole asymmetry could be studied by simply varying La/Na ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا