ﻻ يوجد ملخص باللغة العربية
We propose to monitor a qubit with a double-dot (DD) resonant-tunneling detector, which can operate at higher temperatures than a single-dot detector. In order to assess the effectiveness of this device, we derive rate equations for the density matrix of the entire system. We show that the signal-to-noise ratio can be greatly improved by a proper choice of the parameters and location of the detector. We demonstrate that quantum interference effects within the DD detector play an important role in the measurement. Surprisingly, these effects produce a systematic measurement error, even when the entire system is in a stationary state.
We propose to continuously monitor a charge qubit by utilizing a T-shaped double quantum dot detector, in which the qubit and double dot are arranged in such a unique way that the detector turns out to be particularly susceptible to the charge states
Electron spin s in semiconductor quantum dot s have been intensively studied for implementing quantum computation and high fidelity single and two qubit operation s have recently been achieved . Quantum teleportation is a three qubit protocol exploit
Quantum phase transitions (QPTs) in qubit systems are known to produce singularities in the entanglement, which could in turn be used to probe the QPT. Current proposals to measure the entanglement are challenging however, because of their nonlocal n
We propose a scheme based on using the singlet ground state of an electron spin pair in a double quantum dot nanostructure as a suitable set-up for detecting entanglement between electron spins via the measurement of an optimal entanglement witness.
We investigate qubit measurements using a single electron transistor (SET). Applying the Schrodinger equation to the entire system we find that an asymmetric SET is considerably more efficient than a symmetric SET. The asymmetric SET becomes close to