ﻻ يوجد ملخص باللغة العربية
We present the continued fraction method (CFM) as a new microscopic approximation to the spectral density of the Hubbard model in the correlated metal phase away from half filling. The quantity expanded as a continued fraction is the single particle Green function. Leading spectral moments are taken into account through a set of real expansion coefficients, as known from the projection technique. The new aspect is to add further stages to the continued fraction, with complex coefficients, thus defining a terminator function. This enables us to treat the entire spectral range of the Green function on equal footing and determine the energy scale of the Fermi liquid quasiparticles by minimizing the total energy. The solution is free of phenomenological parameters and remains well defined in the strong coupling limit, near the doping controlled metal-insulator transition. Our results for the density of states agree reasonably with several variants of the dynamical mean field theory. The CFM requires minimal numerical effort and can be generalized in several ways that are interesting for applications to real materials.
Two-dimensional density-matrix renormalization group method is employed to examine the ground state phase diagram of the Hubbard model on the triangular lattice at half filling. The calculation reveals two discontinuities in the double occupancy with
The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy wit
We calculate the spectral weight of the one- and two-dimensional Hubbard models, by performing exact diagonalizations of finite clusters and treating inter-cluster hopping with perturbation theory. Even with relatively modest clusters (e.g. 12 sites)
We derive a general procedure for evaluating the ${rm n}$th derivative of a time-dependent operator in the Heisenberg representation and employ this approach to calculate the zeroth to third spectral moment sum rules of the retarded electronic Greens
The solution of complex many-body lattice models can often be found by defining an energy functional of the relevant density of the problem. For instance, in the case of the Hubbard model the spin-resolved site occupation is enough to describe the sy