ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum transport in randomly diluted quantum percolation clusters in two dimensions

93   0   0.0 ( 0 )
 نشر من قبل Eduardo C. Cuansing Jr
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the hopping transport of a quantum particle through finite, randomly diluted percolation clusters in two dimensions. We investigate how the transmission coefficient T behaves as a function of the energy E of the particle, the occupation concentration p of the disordered cluster, the size of the underlying lattice, and the type of connection chosen between the cluster and the input and output leads. We investigate both the point-to-point contacts and the busbar type of connection. For highly diluted clusters we find the behavior of the transmission to be independent of the type of connection. As the amount of dilution is decreased we find sharp variations in transmission. These variations are the remnants of the resonances at the ordered, zero-dilution, limit. For particles with energies within 0.25 <= E <= 1.75 (relative to the hopping integral) and with underlying square lattices of size 20x20, the configurations begin transmitting near p_a = 0.60 with T against p curves following a common pattern as the amount of dilution is decreased. Near p_b = 0.90 this pattern is broken and the transmission begins to vary with the energy. In the asymptotic limit of very large clusters we find the systems to be totally reflecting except when the amount of dilution is very low and when the particle has energy close to a resonance value at the ordered limit or when the particle has energy at the middle of the band.



قيم البحث

اقرأ أيضاً

This paper presents an analytical study of the coexistence of different transport regimes in quasi-one-dimensional surface-disordered waveguides (or electron conductors). To elucidate main features of surface scattering, the case of two open modes (c hannels) is considered in great detail. Main attention is paid to the transmission in dependence on various parameters of the model with two types of rough-surface profiles (symmetric and antisymmetric). It is shown that depending on the symmetry, basic mechanisms of scattering can be either enhanced or suppressed. As a consequence, different transport regimes can be realized. Specifically, in the waveguide with symmetric rough boundaries, there are ballistic, localized and coexistence transport regimes. In the waveguide with antisymmetric roughness of lateral walls, another regime of the diffusive transport can arise. Our study allows to reveal the role of the so-called square-gradient scattering which is typically neglected in literature, however, can give a strong impact to the transmission.
We study the percolation of a quantum particle on quasicrystal lattices and compare it with the square lattice. For our study, we have considered quasicrystal lattices modelled on the pentagonally symmetric Penrose tiling and the octagonally symmetri c Ammann-Beenker tiling. The dynamics of the quantum particle is modelled using continuous-time quantum walk (CTQW) formalism. We present a comparison of the behaviour of the CTQW on the two aperiodic quasicrystal lattices and the square lattice when all the vertices are connected and when disorder is introduced in the form of disconnections between the vertices. Unlike on a square lattice, we see a significant fraction of quantum state localised around the origin in quasicrystal lattice. With increase in disorder, the percolation probability of a particle on a quasicrystal lattice decreases significantly faster when compared to the square lattice. This study sheds light on the minimum fraction of disconnections allowed to see percolation of quantum particle on these quasicrystal lattices.
In this communication, we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-superconductor junction based on the effective edge model approach. In particular, we focus on the parameter regime with the free mean pa th due to elastic scattering much smaller than the sample size and discuss disordered transport behaviors in the presence of different numbers of chiral edge modes, as well as non-chiral metallic modes. Our numerical results demonstrate that the presence of multiple chiral edge modes or non-chiral metallic modes will lead to a strong Andreev conversion, giving rise to half-electron half-hole transmission through the junction structure, in sharp contrast to the suppression of Andreev conversion in the single chiral edge mode case. Our results suggest the importance of additional transport modes in the quantum anomalous Hall insulator-superconductor junction and will guide the future transport measurements.
74 - P.E. Berche 2002
We investigate by Monte Carlo simulations the critical properties of the three-dimensional bond-diluted Ising model. The phase diagram is determined by locating the maxima of the magnetic susceptibility and is compared to mean-field and effective-med ium approximations. The calculation of the size-dependent effective critical exponents shows the competition between the different fixed points of the model as a function of the bond dilution.
The influence of random site dilution on the critical properties of the two-dimensional Ising model on a square lattice was explored by Monte Carlo simulations with the Wang-Landau sampling. The lattice linear size was $L = 20-120$ and the concentrat ion of diluted sites $q=0.1, 0.2, 0.3$. Its pure version displays a second-order phase transition with a vanishing specific heat critical exponent $alpha$, thus, the Harris criterion is inconclusive, in that disorder is a relevant or irrelevant perturbation for the critical behavior of the pure system. The main effort was focused on the specific heat and magnetic susceptibility. We have also looked at the probability distribution of susceptibility, pseudocritical temperatures and specific heat for assessing self-averaging. The study was carried out in appropriate restricted but dominant energy subspaces. By applying the finite-size scaling analysis, the correlation length exponent $ u$ was found to be greater than one, whereas the ratio of the critical exponents ($alpha / u$) is negative and ($gamma / u$) retains its pure Ising model value supporting weak universality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا