ﻻ يوجد ملخص باللغة العربية
We present a crystal field theory of transition metal impurities in semiconductors in a trigonally distorted tetrahedral coordination. We develop a perturbative scheme to treat covalency effects within the weak ligand field case (Coulomb interaction dominates over one-particle splitting) and apply it to ZnO:Co$^{2+}$ (3d$^7$). Using the large value of the charge transfer energy $Delta_{pd}$ compared to the $p$-$d$ hoppings, we perform a canonical transformation which eliminates the coupling with ligands to first order. As a result, we obtain an effective single-ion Hamiltonian, where the influence of the ligands is reduced to the one-particle crystal field acting on $d$-like-functions. This derivation allows to elucidate the microscopic origin of various crystal field parameters and covalency reduction factors which are usually used empirically for the interpretation of optical and ESR experiments. The connection of these parameters with the geometry of the local environment becomes transparent. The experimentally known $g$-values and the zero-field splitting 2D are very well reproduced by the exact diagonalization of the effective single-ion Hamiltonian with only one adjustable parameter $Delta _{pd}$. Alternatively to the numerical diagonalization we use perturbation theory in the weak field scheme (Coulomb interaction $gg$ cubic splitting $gg$ trigonal splitting and spin-orbit coupling) to derive compact analytical expressions for the spin-Hamiltonian parameters that reproduce the result of exact diagonalization within 20% of accuracy.
Co doped ZnV2O4 has been investigated by Synchrotron X-ray diffraction, Magnetization measurement and Extended X-ray absorption fine structure (EXAFS) analysis. With Co doping in the Zn site the system moves towards the itinerant electron limit. From
Understanding new superconductors requires high-quality epitaxial thin films to explore intrinsic electromagnetic properties, control grain boundaries and strain effects, and evaluate device applications. So far superconducting properties of ferropni
Co-based shandite Co$_3$Sn$_2$S$_2$ is a representative example of magnetic Weyl semimetals showing rich transport phenomena. We thoroughly investigate magnetic and transport properties of hole-doped shandites Co$_3$In$_x$Sn$_{2-x}$S$_2$ by first-pri
The tetragonal compound YbRu$_{2}$Ge$_{2}$ exhibits a non-magnetic transition at $T_0$=10.2K and a magnetic transition at $T_1$=6.5K in zero magnetic field. We present a model for this material based on a quasi-quartet of Yb$^{3+}$ crystalline electr
We report on the emergence of an Electronic Griffiths Phase (EGP) in the doped semiconductor FeSb$_{2}$, predicted for disordered insulators with random localized moments in the vicinity of a metal-insulator transition (MIT). Magnetic, transport, and