ترغب بنشر مسار تعليمي؟ اضغط هنا

High Pressure Effects

52   0   0.0 ( 0 )
 نشر من قبل James S. Schilling
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experiments under hydrostatic and uniaxial pressure serve not only as a guide in the synthesis of materials with superior superconducting properties but also allow a quantitative test of theoretical models. In this chapter the pressure dependence of the superconducting properties of elemental, binary, and multi-atom superconductors are explored, with an emphasis on those exhibiting relatively high values of the transition temperature Tc. In contrast to the vast majority of superconductors, where Tc decreases under pressure, in the cuprate oxides Tc normally increases. Uniaxial pressure studies give evidence that this increase arises mainly from the reduction in the area of the CuO2 planes (Tc approximately proportional to inverse square area), rather than in the separation between the planes, thus supporting theoretical models which attribute the superconductivity primarily to intraplanar pairing interactions. More detailed information would be provided by future experiments in which the hydrostatic and uniaxial pressure dependences of several basic parameters, such as Tc, the superconducting gap, the pseudo-gap, the carrier concentration, and the exchange interaction are determined for a given material over the full range of doping.



قيم البحث

اقرأ أيضاً

High-pressure superconductivity in a rare-earth doped Ca0.86Pr0.14Fe2As2 single crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical resistance measurements were complemented by high pressure and low temperature x-ray diffraction studies at a synchrotron source. The electrical resistance measurements show an intriguing observation of superconductivity under pressure, with Tc as high as ~51 K at 1.9 GPa, presenting the highest Tc reported in the intermetallic class of 1-2-2 iron-based superconductors. The resistive transition observed suggests a possible existence of two superconducting phases at low pressures of 0.5 GPa: one phase starting at Tc1 ~48 K, and the other starting at Tc2~16 K. The two superconducting transitions show distinct variations with increasing pressure. High pressure low temperature structural studies indicate that the superconducting phase is a collapsed tetragonal ThCr2Si2-type (122) crystal structure. Our high pressure studies indicate that high Tc state attributed to non-bulk superconductivity in rare-earth doped 1-2-2 iron-based superconductors is stable under compression over a broad pressure range.
While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the abs ence of iron in the structure that the superconducting characteristics of the end member BaPd2As2 are surprisingly conventional. Here we report on complementary measurements of specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and synchrotron high pressure x-ray diffraction measurements supplemented with theoretical calculations for BaPd2As2. Its superconducting properties are completely isotropic as demonstrated by the critical fields, which do not depend on the direction of the applied field. Under the application of high pressure, Tc is linearly suppressed, which is the typical behavior of classical phonon-mediated superconductors with some additional effect of a pressure-induced decrease in the electronic density of states and the electron-phonon coupling parameters. Structural changes in the layered BaPd2As2 have been studied by means of angle-dispersive diffraction in a diamond-anvil cell. At 12 GPa and 24.2 GPa we observed pressure induced lattice distortions manifesting as the discontinuity and, hence discontinuity in the Birch-Murnaghan equation of state. The bulk modulus is B0=40(6) GPa below 12 GPa and B0=142(3) GPa below 27.2 GPa.
The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility m easurements. The crystal structure under pressure was examined using synchrotron X-ray diffraction at SPring-8. In the low-pressure regime, bulk superconductivity with a transition temperature Tc of ~ 4.5 K was induced by pressure, which was achieved by in-plane chemical pressure effect owing to the compression of the tetragonal structure. In the high-pressure regime above 6.4 GPa, a structural symmetry lowering was observed, and superconducting transitions with a Tc ~ 8 K were observed. Our results suggest the possible commonality on the factor essential for Tc in Bi-based superconductors with two-layer-type and four-layer-type conducting layers.
BaFe2Se3 is a potential superconductor material exhibiting transition at 11 K and ambient pressure. Here we extended the structural and performed electrical resistivity measurements on this compound up to 51 GPa and 20 GPa, respectively, in order to distinguish if the superconductivity in this sample is intrinsic to the BaFe2Se3 phase or if it is originating from minor FeSe impurities that show a similar superconductive transition temperature. The electrical resistance measurements as a function of pressure show that at 5 GPa the superconducting transition is observed at around 10 K, similar to the one previously observed for this sample at ambient pressure. This indicates that the superconductivity in this sample is intrinsic to the BaFe2Se3 phase and not to FeSe with Tc > 20 K at these pressures. Further increase in pressure suppressed the superconductive signal and the sample remained in an insulating state up to the maximum achieved pressure of 20 GPa. Single-crystal and powder X-ray diffraction measurements revealed two structural transformations in BaFe2Se3: a second order transition above 3.5 GPa from Pnma (CsAg2I3-type structure) to Cmcm (CsCu2Cl3-type structure) and a first order transformation at 16.6 GPa. Here, {gamma}-BaFe2Se3 transforms into {delta}-BaFe2Se3 (Cmcm, CsCu2Cl3-type average structure) via a first order phase transition mechanism. This transitions is characterized by a significant shortening of the b lattice parameter of {gamma}-BaFe2Se3 (17%) and accompanied by an anisotropic expansion in the orthogonal ac plane at the transition point.
The hydrostatic pressure effect on the newly discovered superconductor MgB2 has been determined. The transition temperature Tc was found to decrease linearly at a large rate of -1.6 K/GPa, in good quantitative agreement with the ensuing calculated va lue of -1.4 K/GPa within the BCS framework by Loa and Syassen, using the full-potential linearlized augmented plane-wave method. The relative pressure coefficient, dlnTc/dp, for MgB2 also falls between the known values for conventional sp- and d-superconductors. The observation, therefore, suggests that electron-phonon interaction plays a significant role in the superconductivity of the compound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا