We analyze the Sznajd opinion formation model, where a pair of neighboring individuals sharing the same opinion on a square lattice convince its six neighbors to adopt their opinions, when a fraction of the individuals is updated according to the usual random sequential updating rule (asynchronous updating), and the other fraction, the simultaneous updating (synchronous updating). This combined updating scheme provides that the bigger the synchronous frequency becomes, the more difficult the system reaches a consensus. Moreover, in the thermodynamic limit, the system needs only a small fraction of individuals following a different kind of updating rules to present a non-consensus state as a final state.