ترغب بنشر مسار تعليمي؟ اضغط هنا

Bose-Einstein condensates in fast rotation

111   0   0.0 ( 0 )
 نشر من قبل Sabine Stock
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sabine Stock




اسأل ChatGPT حول البحث

In this short review we present our recent results concerning the rotation of atomic Bose-Einstein condensates confined in quadratic or quartic potentials, and give an overview of the field. We first describe the procedure used to set an atomic gas in rotation and briefly discuss the physics of condensates containing a single vortex line. We then address the regime of fast rotation in harmonic traps, where the rotation frequency is close to the trapping frequency. In this limit the Landau Level formalism is well suited to describe the system. The problem of the condensation temperature of a fast rotating gas is discussed, as well as the equilibrium shape of the cloud and the structure of the vortex lattice. Finally we review results obtained with a quadratic + quartic potential, which allows to study a regime where the rotation frequency is equal to or larger than the harmonic trapping frequency.



قيم البحث

اقرأ أيضاً

We propose an inverse method to accelerate without final excitation the adiabatic transport of a Bose Einstein condensate. The method, applicable to arbitrary potential traps, is based on a partial extension of the Lewis-Riesenfeld invariants, and pr ovides transport protocols that satisfy exactly the no-excitation conditions without constraints or approximations. This inverse method is complemented by optimizing the trap trajectory with respect to different physical criteria and by studying the effect of noise.
We demonstrate theoretically the spontaneous formation of a stochastic polarization in exciton-polariton Bose-Einstein condensates in planar microcavities under pulsed excitation. Below the threshold pumping intensity (dependent on the polariton life -time) the average polarization degree is close to zero, whilst above threshold the condensate acquires a polarization described by a (pseudospin) vector with random orientation, in general. We establish the link between second order coherence of the polariton condensate and the distribution function of its polarization. We examine also the mechanisms of polarization dephasing and relaxation.
142 - V. Pietila , M. Mottonen , 2007
We study the energetic and dynamic stability of coreless vortices in nonrotated spin-1 Bose-Einstein condensates, trapped with a three-dimensional optical potential and a Ioffe-Pritchard field. The stability of stationary vortex states is investigate d by solving the corresponding Bogoliubov equations. We show that the quasiparticle excitations corresponding to axisymmetric stationary states can be taken to be eigenstates of angular momentum in the axial direction. Our results show that coreless vortex states can occur as local or global minima of the condensate energy or become energetically or dynamically unstable depending on the parameters of the Ioffe-Pritchard field. The experimentally most relevant coreless vortex state containing a doubly quantized vortex in one of the hyperfine spin components turned out to have very non-trivial stability regions, and especially a quasiperiodic dynamic instability region which corresponds to splitting of the doubly quantized vortex.
We investigate the effect of the anisotropy of a harmonic trap on the behaviour of a fast rotating Bose-Einstein condensate. This is done in the framework of the 2D Gross-Pitaevskii equation and requires a symplectic reduction of the quadratic form d efining the energy. This reduction allows us to simplify the energy on a Bargmann space and study the asymptotics of large rotational velocity. We characterize two regimes of velocity and anisotropy; in the first one where the behaviour is similar to the isotropic case, we construct an upper bound: a hexagonal Abrikosov lattice of vortices, with an inverted parabola profile. The second regime deals with very large velocities, a case in which we prove that the ground state does not display vortices in the bulk, with a 1D limiting problem. In that case, we show that the coarse grained atomic density behaves like an inverted parabola with large radius in the deconfined direction but keeps a fixed profile given by a Gaussian in the other direction. The features of this second regime appear as new phenomena.
We review some theories of non-equilibrium Bose-Einstein condensates in potentials, in particular of the Bose-Einstein condensate of polaritons. We discuss such condensates, which are steady-states established through a balance of gain and loss, in t he complementary limits of a double-well potential and a random disorder potential. For equilibrium condensates, the former corresponds to a Josephson junction, whereas the latter is the setting for the superfluid/Bose glass transition. We explore the non-equilibrium generalization of these phenomena, and highlight connections with mode selection and synchronization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا