ترغب بنشر مسار تعليمي؟ اضغط هنا

Low velocity quantum reflection of Bose-Einstein condensates

141   0   0.0 ( 0 )
 نشر من قبل Thomas A. Pasquini Jr
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied quantum reflection of Bose-Einstein condensates at normal incidence on a square array of silicon pillars. For incident velocities of 2.5-26 mm/s observations agreed with theoretical predictions that the Casimir-Polder potential of a reduced density surface would reflect slow atoms with much higher probability. At low velocities (0.5-2.5 mm/s), we observed that the reflection probability saturated around 60% rather than increasing towards unity. We present a simple model which explains this reduced reflectivity as resulting from the combined effects of the Casimir-Polder plus mean field potential and predicts the observed saturation. Furthermore, at low incident velocities, the reflected condensates show collective excitations.



قيم البحث

اقرأ أيضاً

85 - A. S. Arnold , C. MacCormick , 2003
We report adjustable magnetic `bouncing and focusing of a dilute $^{87}$Rb Bose gas. Both the condensate production and manipulation are realised using a particularly straight-forward apparatus. The bouncing region is comprised of approximately conce ntric ellipsoidal magnetic equipotentials with a centre that can be adjusted vertically. We extend, and discuss the limitations of, simple Thomas-Fermi and Monte-Carlo theoretical models for the bouncing, which at present find close agreement with the condensates evolution. Very strong focusing has been inferred and the observation of atomic matter-wave diffraction should be possible. Prospects look bright for applications in matter-wave atom-optics, due to the very smooth nature of the mirror.
We investigate the time taken for global collapse by a dipolar Bose-Einstein condensate. Two semi-analytical approaches and exact numerical integration of the mean-field dynamics are considered. The semi-analytical approaches are based on a Gaussian ansatz and a Thomas-Fermi solution for the shape of the condensate. The regimes of validity for these two approaches are determined, and their predictions for the collapse time revealed and compared with numerical simulations. The dipolar interactions introduce anisotropy into the collapse dynamics and predominantly lead to collapse in the plane perpendicular to the axis of polarization.
The processes of merging and splitting dilute-gas Bose-Einstein condensates are studied in the nonadiabatic, high-density regime. Rich dynamics are found. Depending on the experimental parameters, uniform soliton trains containing more than ten solit ons or the formation of a high-density bulge as well as quantum (or dispersive) shock waves are observed experimentally within merged BECs. Our numerical simulations indicate the formation of many vortex rings. In the case of splitting a BEC, the transition from sound-wave formation to dispersive shock-wave formation is studied by use of increasingly stronger splitting barriers. These experiments realize prototypical dispersive shock situations.
269 - T. P. Simula , T. Mizushima , 2009
We have theoretically studied vortex waves of Bose-Einstein condensates in elongated harmonic traps. Our focus is on the axisymmetric varicose waves and helical Kelvin waves of singly quantized vortex lines. Growth and decay dynamics of both types of vortex waves are discussed. We propose a method to experimentally create these vortex waves on demand.
Phase transitions are ubiquitous in nature, ranging from protein folding and denaturisation, to the superconductor-insulator quantum phase transition, to the decoupling of forces in the early universe. Remarkably, phase transitions can be arranged in to universality classes, where systems having unrelated microscopic physics exhibit identical scaling behaviour near the critical point. Here we present an experimental and theoretical study of the Bose-Einstein condensation phase transition of an atomic gas, focusing on one prominent universal element of phase transition dynamics: the spontaneous formation of topological defects during a quench through the transition. While the microscopic dynamics of defect formation in phase transitions are generally difficult to investigate, particularly for superfluid phase transitions, Bose-Einstein condensates (BECs) offer unique experimental and theoretical opportunities for probing such details. Although spontaneously formed vortices in the condensation transition have been previously predicted to occur, our results encompass the first experimental observations and statistical characterisation of spontaneous vortex formation in the condensation transition. Using microscopic theories that incorporate atomic interactions and quantum and thermal fluctuations of a finite-temperature Bose gas, we simulate condensation and observe vortex formation in close quantitative agreement with our experimental results. Our studies provide further understanding of the development of coherence in superfluids, and may allow for direct investigation of universal phase-transition dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا