ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of strong localization of doped holes in angle-resolved photoemission spectra of La$_{1-x}$Sr$_x$FeO$_3$

112   0   0.0 ( 0 )
 نشر من قبل Hiroki Wadati
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed an angle-resolved photoemission spectroscopy study of La$_{0.6}$Sr$_{0.4}$FeO$_3$ using {it in situ} prepared thin films and determined its band structure. The experimental band dispersions could be well explained by an empirical band structure assuming the G-type antiferromagnetic state. However, the Fe 3d bands were found to be shifted downward relative to the Fermi level ($E_F$) by $sim 1$ eV compared with the calculation and to form a (pseudo)gap of $sim 1$ eV at $E_F$. We attribute this observation to a strong localization effect of doped holes due to polaron formation.



قيم البحث

اقرأ أيضاً

A detailed electronic phase diagram of perovskite-type oxides Sr$_{1-x}$La$_x$FeO$_3$ $(0leq x leq 0.5)$ was established by synchrotron X-ray diffraction, magnetization, and transport measurements for polycrystalline samples synthesized by a high-pre ssure technique. Among three kinds of helimagnetic phases in SrFeO$_3$ at zero field, two of them showing multiple-${it q}$ helimagnetic spin textures tend to rapidly disappear in cubic symmetry upon the La substitution with $x$ less than 0.1, which accompanies the loss of metallic nature. On the other hand, the third helimagnetic phase apparently remains robustly in Sr$_{1-x}$La$_x$FeO$_3$ with $x$ higher than 0.1, followed by merging to the spin/charge ordered phase with $xsim 1/3$. We propose an important role of itinerant ligand holes on the emergence of multiple-${it q}$ states and a possible link between the third (putative single-${it q}$) helimagnetic phase in SrFeO$_3$ and the spin/charge ordered phase in Sr$_{2/3}$La$_{1/3}$FeO$_3$.
We have studied the electronic structure of epitaxially grown thin films of La$_{1-x}$Sr$_x$FeO$_3$ by {it in-situ} photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS) measurements. The Fe 2$p$ and valence-band PES spectra and th e O $1s$ XAS spectra of LaFeO$_3$ have been successfully reproduced by configuration-interaction cluster-model calculation and, except for the satellite structure, by band-structure calculation.From the shift of the binding energies of core levels, the chemical potential was found to be shifted downward as $x$ was increased. Among the three peaks in the valence-band spectra of La$_{1-x}$Sr$_x$FeO$_3$, the peak nearest to the Fermi level ($E_F$), due to the ``$e_{g}$ band, was found to move toward $E_F$ and became weaker as $x$ was increased, whereas the intensity of the peak just above $E_F$ in the O $1s$ XAS spectra increased with $x$. The gap or pseudogap at $E_F$ was seen for all values of $x$. These results indicate that changes in the spectral line shape around $E_F$ are dominated by spectral weight transfer from below to above $E_F$ across the gap and are therefore highly non-rigid-band-like.
We investigate charge distribution in the recently discovered high-$T_c$ superconductors, layered nickelates. With increasing value of charge-transfer energy we observe the expected crossover from the cuprate to the local triplet regime upon hole dop ing. We find that the $d-p$ Coulomb interaction $U_{dp}$ plays a role and makes Zhang-Rice singlets less favorable, while the amplitude of local triplets is enhanced. By investigating the effective two-band model with orbitals of $x^2-y^2$ and $s$ symmetries we show that antiferromagnetic interactions dominate for electron doping. The screened interactions for the $s$ band suggest the importance of rare-earth atoms in superconducting nickelates.
To clarify how the electronic state of Sr1-xLaxRuO3 evolves with La doping, we conducted photoemission (PES) experiments using soft x-rays. The spectral shape of the Ru 4d derived peak near the Fermi level changes significantly with increasing x. Thi s variation indicates that a spectral weight transfer from the coherent to incoherent component occurs due to an enhancement of the electron correlation effect. Resonant PES experiments at the La 3d_{5/2} edge have confirmed that there is no significant contribution of the La 5d state in the energy range where the spectral weight transfer is observed. Using the dependence of the photoelectron mean free path on the photon energy, we subtracted the surface components from the PES spectra and confirmed that the enhancement of the electron correlation effect with La doping is an intrinsic bulk phenomenon. On the other hand, a large portion of the coherent component remains at the Fermi level up to x = 0.5, reflecting that the Ru 4d state still has itinerant characteristics. Moreover, we found that the PES spectra hardly depend on the temperature and do not exhibit a discernible change with magnetic ordering, suggesting that the temperature variation of the exchange splitting does not follow the prediction of the Stoner theory. The presently obtained experimental results indicate that the electron correlation effect plays an important role in Sr1-xLaxRuO3 and that the Ru 4d electrons possess both local and itinerant characteristics.
Due to the orthorhombic distortion of the lattice, the electronic hopping integrals along the $a$ and $b$ diagonals, the orthorhombic directions, are slightly different. We calculate their difference in the LDA and find $t_{a}^{prime}-t_{b}^{prime}ap prox 8 $meV. We argue that electron correlations in the insulating phase of La$_{2-x}$Sr$_{x}$CuO$_{4}$, i. e. at doping $xleq 0.055,$ dramatically enhance the $(t_{a}^{prime}-t_{b}^{prime}) $-splitting between the $a$- and $b$-hole valleys. In particular, we predict that the intensity of both angle-resolved photoemission and of optical absorption is very different for the $a$ and $b$ nodal points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا