ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Theoretical analysis of the transmission phase shift of a quantum dot in the presence of Kondo correlations

50   0   0.0 ( 0 )
 نشر من قبل Amnon Aharony
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, A. Jerez, P. Vitushinsky and M. Lavagna [Phys. Rev. Lett. 95, 127203 (2005)] claimed that the transmission phase through a quantum fot, as measured via the Aharonov-Bohm interferometer, differs from the phase which determines the corresponding conductance. Here we show that this claim is wrong for the single level Anderson model, which is usually used to describe the quantum dot. So far, there exists no derivation of this claim from any explicit theoretical model.



قيم البحث

اقرأ أيضاً

106 - Stefan Rotter , Y. Alhassid 2009
We consider a Kondo spin that is coupled antiferromagnetically to a large chaotic quantum dot. Such a dot is described by the so-called universal Hamiltonian and its electrons are interacting via a ferromagnetic exchange interaction. We derive an eff ective Hamiltonian in the limit of strong Kondo coupling, where the screened Kondo spin effectively removes one electron from the dot. We find that the exchange coupling constant in this reduced dot (with one less electron) is renormalized and that new interaction terms appear beyond the conventional terms of the strong-coupling limit. The eigenenergies of this effective Hamiltonian are found to be in excellent agreement with exact numerical results of the original model in the limit of strong Kondo coupling.
We report on the phase measurements on a quantum dot containing a single electron in the Kondo regime. Transport takes place through a single orbital state. Although the conductance is far from the unitary limit, we measure for the first time, a tran smission phase as theoretically predicted of pi/2. As the dots coupling to the leads is decreased, with the dot entering the Coulomb blockade regime, the phase reaches a value of pi. Temperature shows little effect on the phase behaviour in the range 30--600 mK, even though both the two-terminal conductance and amplitude of the Aharonov-Bohm oscillations are strongly affected. These results confirm that previous phase measurements involved transport through more than a single level.
72 - R. Scheibner 2004
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and con ductivity. The strong thermopower signal indicates a significant asymmetry in the spectral density of states of the Kondo resonance with respect to the Fermi energies of the reservoirs. The observed behavior can be explained within the framework of an Anderson-impurity model. Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single electron tunneling, Kondo-effect PACS Numbers: 72.20.Pa, 73.23.Hk
We review our recent studies on the Kondo effect in the tunneling phenomena through quantum dot systems. Numerical methods to calculate reliable tunneling conductance are developed. In the first place, a case in which electrons of odd number occupy t he dot is studied, and experimental results are analyzed based on the calculated result. Tunneling anomaly in the even-number-electron occupation case, which is recently observed in experiment and is ascribed to the Kondo effect in the spin singlet-triplet cross over transition region, is also examined theoretically.
We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kon do physics. First, the Zeeman spin-splitting of the zero-bias peak in the differential conductance is independent of gate voltage. Second, this splitting is twice as large as the splitting for the lowest one-dimensional subband. We show that the Zeeman splitting of the zero-bias peak is highly-anisotropic, and attribute this to the strong spin-orbit interaction for holes in GaAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا