ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice dynamics of the high temperature shape memory alloy Nb-Ru

66   0   0.0 ( 0 )
 نشر من قبل Guangyong Xu
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nb-Ru is a high temperature shape memory alloy that undergoes a Martensitic transformation from a parent cubic b-phase into a tetragonal b phase at TM 900 C. Measurements of the phonon dispersion curves show that the [110]-TA2 phonon branch, corresponding in the q=0 limit to the elastic constant C=1/2(C11-C12) has an anomalous temperature dependence. Nearly the entire branch softens with decreasing temperature as TM is approached. The temperature dependence of the low-q phonon energies suggests that the elastic constants would approach 0 as T approaches TM, indicating a second order transition. No additional lattice modulation is observed in the cubic phase.



قيم البحث

اقرأ أيضاً

135 - S. M. Shapiro , G. Xu , B. L. Winn 2007
Ti50 Pd50-xCrx is a high temperature shape memory alloy with a martensitic transformation temperature strongly dependent on the Cr composition. Prior to the transformation a premartensitic phase is present with an incommensurate modulated cubic latti ce with wave vector of q0=(0.22, 0.22, 0). The temperature dependence of the diffuse scattering in the cubic phase is measured as a function temperature for x=6.5, 8.5, and 10 at. %. The lattice dynamics has been studied and reveals anomalous temperature and q-dependence of the [110]-TA2 transverse phonon branch. The phonon linewidth is broad over the entire Brillouin zone and increases with decreasing temperature, contrary to the behavior expected for anharmonicity. No anomaly is observed at q0. The results are compared with first principles calculation of the phonon structure.
Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni$_2$MnGa film and reveal a set of timescales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300~fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320~fs, which is comparable to the quenching of the structural modulation.
The large magnetocaloric effect (MCE) observed in Ni-Mn based shape-memory Heusler alloys put them forward to use in magnetic refrigeration technology. It is associated with a first-order magnetostructural (martensitic) phase transition. We conducted a comprehensive study of the MCE for the off-stoichiometric Heusler alloy Ni$_{2.2}$Mn$_{0.8}$Ga in the vicinity of its first-order magnetostructural phase transition. We found a reversible MCE under repeated magnetic field cycles. The reversible behavior can be attributed to the small thermal hysteresis of the martensitic phase transition. Based on the analysis of our detailed temperature dependent X-ray diffraction data, we demonstrate the geometric compatibility of the cubic austenite and tetragonal martensite phases. This finding directly relates the reversible MCE behavior to an improved geometric compatibility condition between cubic austenite and tetragonal martensite phases. The approach will help to design shape-memory Heusler alloys with a large reversible MCE taking advantage of the first-order martensitic phase transition.
A negative-positive-negative switching behavior of magnetoresistance (MR) with temperature is observed in a ferromagnetic shape memory alloy Ni_1.75Mn_1.25Ga. In the austenitic phase between 300 and 120 K, MR is negative due to s-d scattering. Curiou sly, below 120K MR is positive, while at still lower temperatures in the martensitic phase, MR is negative again. The positive MR cannot be explained by Lorentz contribution and is related to a magnetic transition. Evidence for this is obtained from ab initio density functional theory, a decrease in magnetization and resistivity upturn at 120 K. Theory shows that a ferrimagnetic state with anti-ferromagnetic alignment between the local magnetic moments of the Mn atoms is the energetically favoured ground state. In the martensitic phase, there are two competing factors that govern the MR behavior: a dominant negative trend up to the saturation field due to the decrease of electron scattering at twin and domain boundaries; and a weaker positive trend due to the ferrimagnetic nature of the magnetic state. MR exhibits a hysteresis between heating and cooling that is related to the first order nature of the martensitic phase transition.
An inelastic neutron scattering study of the lattice dynamics of the martensite phase of the ferromagnetic shape memory alloy, Ni2MnGa, reveals the presence of well-defined phasons associated with the charge density wave (CDW) resulting from Fermi su rface (FS) nesting. The velocity and the temperature dependence of the phason are measured as well as the anomalous [110]-TA2 phonon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا