ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential reflection spectroscopy on InAs/GaAs quantum dots

364   0   0.0 ( 0 )
 نشر من قبل Erik Bogaart
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this report, we present the derivation of the differential reflection spectrum as has been reported in emph{Phys. Rev. B} textbf{72}, 195301 (2005).



قيم البحث

اقرأ أيضاً

We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole $p$, $d$ intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small $p$, $d$ level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV ($sim$ 1.55 $mu$m), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton $P$ shell and $D$ shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [1$bar{1}$0] directions.
We report on the micro-photoluminescence spectroscopy of InAs/GaAs quantum dots (QD) doped by a single Mn atom in a magnetic field either longitudinal or perpendicular to the optical axis. In both cases the spectral features of positive trion (X+) ar e found to split into strongly circularly polarized components, an effect very surprising in a perpendicular magnetic field. The field-induced splitting is ascribed to the transverse Zeeman splitting of the neutral acceptor complex A0 issued by the Mn impurity, whereas the circular optical selection rules result from the p-d exchange which acts as a very strong longitudinal magnetic field inhibiting the spin mixing by the transverse field of the QD heavy-hole ground state. A theoretical model of the spin interactions which includes (i) the local strain anisotropy experienced by the acceptor level and (ii) the anisotropic exchange due to the out-of-center Mn position provides a very good agreement with our observations.
Excitonic polaron is directly demonstrated for the first time in InAs/GaAs quantum dots with photoluminescence method. A new peak ($s$) below the ground state of exciton ($s$) comes out as the temperature varies from 4.2 K to 285 K, and a huge anticr ossing energy of 31 meV between $s$ and $s$ is observed at 225 K, which can only be explained by the formation of excitonic polaron. The results also provide a strong evidence for the invalidity of Huang-Rhys formulism in dealing with carrier-longitudinal optical phonon interaction in quantum dot. Instead, we propose a simple two-band model, and it fits the experimental data quite well. The reason for the finding of the anticrossing is also discussed.
220 - T. Kuroda , M. Abbarchi , T. Mano 2008
We report on photon coincidence measurement in a single GaAs self-assembled quantum dot (QD) using a pulsed excitation light source. At low excitation, when a neutral exciton line was present in the photoluminescence (PL) spectrum, we observed nearly perfect single photon emission from an isolated QD at 670 nm wavelength. For higher excitation, multiple PL lines appeared on the spectra, reflecting the formation of exciton complexes. Cross-correlation functions between these lines showed either bunching or antibunching behavior, depending on whether the relevant emission was from a biexciton cascade or a charged exciton recombination.
We have studied theoretically the type-II GaAsSb capped InAs quantum dots for two structures differing in the composition of the capping layer, being either (i) constant or (ii) with Sb accumulation above the apex of the dot. We have found that the h ole states are segmented and resemble the states in the quantum dot molecules. The two-hole states form singlet and triplet with the splitting energy of 4{mu}eV / 325{mu}eV for the case (i) / (ii). We have also tested the possibility to tune the splitting by vertically applied magnetic field. As the predicted tunability range was limited, we propose an approach for its enhancement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا