ﻻ يوجد ملخص باللغة العربية
We theoretically study measurement induced-dephasing of a superconducting qubit in the circuit QED architecture and compare the results to those obtained experimentally by Schuster {it et al.}, [Phys. Rev. Lett. 94, 123602 (2005)]. Strong coupling of the qubit to the resonator leads to a significant ac-Stark shift of the qubit transition frequency. As a result, quantum fluctuations in the photon number populating the resonator cause dephasing of the qubit. We find good agreement between the predicted line shape of the qubit spectrum and the experimental results. Furthermore, in the strong dispersive limit, where the Stark shift per photon is large compared to the cavity decay rate and the qubit linewidth, we predict that the qubit spectrum will be split into multiple peaks, with each peak corresponding to a different number of photons in the cavity.
We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of suc
We provide a thorough theoretical analysis of qubit state measurement in a setup where a driven, parametrically-coupled cavity system is directly coupled to the qubit, with one of the cavities having a weak Kerr nonlinearity. Such a system could be r
Electromagnetic signals are always composed of photons, though in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photons energy is usually not evident. However, by coupling a superconductin
We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray photons with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation within this mechanism are associated with the change in
Systems in the dispersive regime of cavity quantum electrodynamics (QED) are approaching the limits of validity of the dispersive approximation. We present a model which takes into account nonlinear corrections to the dressing of the atom by the fiel