ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field effect on the superconducting magnetic gap of Nd{1.85}Ce{0.15}CuO4

172   0   0.0 ( 0 )
 نشر من قبل Eugene Motoyama
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic neutron scattering measurements on the archetypical electron-doped material Nd{1.85}Ce{0.15}CuO4 up to high relative magnetic field strength, H/Hc2 ~ 50%, reveal a simple linear magnetic-field effect on the superconducting magnetic gap and the absence of field-induced in-gap states. The extrapolated gap-closing field value is consistent with the upper critical field Hc2, and the high-field response resembles that of the paramagnetic normal state.



قيم البحث

اقرأ أيضاً

High-resolution laser-based angle-resolved photoemission measurements have been carried out on the electron-doped (Nd$_{1.85}$Ce$_{0.15}$)CuO$_4$ high temperature superconductor. We have revealed a clear kink at $sim$60 meV in the dispersion along th e (0,0)-($pi$,$pi$) nodal direction, accompanied by a peak-dip-hump feature in the photoemission spectra. This indicates that the nodal electrons are coupled to collective excitations (bosons) in electron-doped superconductors, with the phonons as the most likely candidate of the boson. This finding has established a universality of nodal electron coupling in both hole- and electron-doped high temperature cuprate superconductors.
We use inelastic neutron scattering to probe magnetic excitations of an optimally electron-doped superconductor Nd$_{1.85}$Ce$_{0.15}$CuO$_{4-delta}$ above and below its superconducting transition temperature $T_c=25$ K. In addition to gradually open ing a spin pseudo gap at the antiferromagnetic ordering wavevector ${bf Q}=(1/2,1/2,0)$, the effect of superconductivity is to form a resonance centered also at ${bf Q}=(1/2,1/2,0)$ but at energies above the spin pseudo gap. The intensity of the resonance develops like a superconducting order parameter, similar to those for hole-doped superconductors and electron-doped Pr$_{0.88}$LaCe$_{0.12}$CuO$_4$. The resonance is therefore a general phenomenon of cuprate superconductors, and must be fundamental to the mechanism of high-$T_c$ superconductivity.
We report a study of the microwave conductivity of electron-doped Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-delta}$ superconducting thin films using a cavity perturbation technique. The relative frequency shifts obtained for the samples placed at a maximum elect ric field location in the cavity are treated using the high conductivity limit presented recently by Peligrad $textit{et}$ $textit{al.}$ Using two resonance modes, TE$_{102}$ (16.5 GHz) and TE$_{101}$ (13 GHz) of the same cavity, only one adjustable parameter $Gamma$ is needed to link the frequency shifts of an empty cavity to the ones of a cavity loaded with a perfect conductor. Moreover, by studying different sample configurations, we can relate the substrate effects on the frequency shifts to a scaling factor. These procedures allow us to extract the temperature dependence of the complex penetration depth and the complex microwave conductivity of two films with different quality. Our data confirm that all the physical properties of the superconducting state are consistent with an order parameter with lines of nodes. Moreover, we demonstrate the high sensitivity of these properties on the quality of the films.
We investigate the effect of external pressure on magnetic order in undoped LnFeAsO (Ln = La, Ce, Pr, La) by using muon-spin relaxation measurements and ab-initio calculations. Both magnetic transition temperature $T_m$ and Fe magnetic moment decreas e with external pressure. The effect is observed to be lanthanide dependent with the strongest response for Ln = La and the weakest for Ln = Sm. The trend is qualitatively in agreement with our DFT calculations. The same calculations allow us to assign a value of 0.68(2) $mu_B$ to the Fe moment, obtained from an accurate determination of the muon sites. Our data further show that the magnetic lanthanide order transitions do not follow the simple trend of Fe, possibly as a consequence of the different $f$-electron overlap.
We report on laser-excited angle-resolved photoemission spectroscopy (ARPES) in the electron-doped cuprate Sm(1.85)Ce(0.15)CuO(4-d). The data show the existence of a nodal hole-pocket Fermi-surface both in the normal and superconducting states. We pr ove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferromagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole-pocket is compatible with a d-wave symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا