ﻻ يوجد ملخص باللغة العربية
A procedure based on the recently developed ``adaptive time-dependent density-matrix-renormalization-group (DMRG) technique is presented to calculate the zero temperature conductance of nanostructures, such as a quantum dots (QDs) or molecular conductors, when represented by a small number of active levels. The leads are modeled using non-interacting tight-binding Hamiltonians. The ground state at time zero is calculated at zero bias. Then, a small bias is applied between the two leads, the wave-function is DMRG evolved in time, and currents are measured as a function of time. Typically, the current is expected to present periodicities over long times, involving intermediate well-defined plateaus that resemble steady states. The conductance can be obtained from those steady-state-like currents. To test this approach, several cases of interacting and non-interacting systems have been studied. Our results show excellent agreement with exact results in the non-interacting case. More importantly, the technique also reproduces quantitatively well-established results for the conductance and local density-of-states in both the cases of one and two coupled interacting QDs. The technique also works at finite bias voltages, and it can be extended to include interactions in the leads.
A detailed description of the time-step-targetting time evolution method within the DMRG algorithm is presented. The focus of this publication is on the implementation of the algorithm, and on its generic application. The case of one-site excitations
Stable organic radicals integrated into molecular junctions represent a practical realization of the single-orbital Anderson impurity model. Motivated by recent experiments for perchlorotriphenylmethyl (PTM) molecules contacted to gold electrodes, we
We introduce a real time version of the functional renormalization group which allows to study correlation effects on nonequilibrium transport through quantum dots. Our method is equally capable to address (i) the relaxation out of a nonequilibrium i
Numerical simulations of strongly correlated electron systems suffer from the notorious fermion sign problem which has prevented progress in understanding if systems like the Hubbard model display high-temperature superconductivity. Here we show how
The so-called minimal models of unconventional superconductivity are lattice models of interacting electrons derived from materials in which electron pairing arises from purely repulsive interactions. Showing unambiguously that a minimal model actual