ﻻ يوجد ملخص باللغة العربية
Electron spin resonance and magnetization data in magnetic fields up to 55 T of a novel multicenter paramagnetic molecular complex [L_2Ni_4(N_3)(O_2C Ada)_4](Cl O_4) are reported. In this compound, four Ni centers each having a spin S = 1 are coupled in a single molecule via bridging ligands (including a mu_4-azide) which provide paths for magnetic exchange. Analysis of the frequency and temperature dependence of the ESR signals yields the relevant parameters of the spin Hamiltonian, in particular the single ion anisotropy gap and the g factor, which enables the calculation of the complex energy spectrum of the spin states in a magnetic field. The experimental results give compelling evidence for tuning the ground state of the molecule by magnetic field from a nonmagnetic state at small fields to a magnetic one in strong fields owing to the spin level crossing at a field of ~25 T.
The anisotropic triangular lattice of the crednerite system Cu(Mn1-xCux)O2 is used as a basic model for studying the influence of spin disorder on the ground state properties of a two-dimensional frustrated antiferromagnet. Neutron diffraction measur
We present zero field muon spin lattice relaxation measurements of a Dysprosium triangle molecular magnet. The local magnetic fields sensed by the implanted muons indicate the coexistence of static and dynamic internal magnetic fields below $T^* ~35$
SrCoO2.5 (SCO) is a charge transfer insulator with 3d6 ground state configuration leading to antiferromagnetic nature. It is observed that substrate induced strain engineering modifies the ground state of SCO thin film with 3d7L (L:O-2p hole) configu
Frustrated spin-1/2 chains, despite the apparent simplicity, exhibit remarkably rich phase diagram comprising vector-chiral (VC), spin-density-wave (SDW) and multipolar/spin-nematic phases as a function of the magnetic field. Here we report a study o
The ground state of negatively charged excitons (trions) in high magnetic fields is shown to be a dark triplet state, confirming long-standing theoretical predictions. Photoluminescence (PL), reflection, and PL excitation spectroscopy of CdTe quantum