Carbon nanotubes are a good realization of one-dimensional crystals where basic science and potential nanodevice applications merge. Defects are known to modify the electrical resistance of carbon nanotubes. They can be present in as-grown carbon nanotubes, but controlling externally their density opens a path towards the tuning of the nanotube electronic characteristics. In this work consecutive Ar+ irradiation doses are applied to single-walled nanotubes (SWNTs) producing a uniform density of defects. After each dose, the room temperature resistance versus SWNT-length [R(L)] along the nanotube is measured. Our data show an exponential dependence of R(L) indicating that the system is within the strong Anderson localization regime. Theoretical simulations demonstrate that mainly di-vacancies contribute to the resistance increase induced by irradiation and that just a 0.03% of di-vacancies produces an increase of three orders of magnitude in the resistance of a 400 nm SWNT length.