ﻻ يوجد ملخص باللغة العربية
It is shown that the two-gap approximation is applicable for describing the $dV/dI(V)$ spectra of LuNi$_{2}$B$_{2}$C-Ag point contacts in a wide interval of temperatures. The values and the temperature dependences of the large and the small gaps in the $ab$ plane and in the $c$ direction were estimated using the generalized BTK model and the equations of Beloborodko. In the BCS extrapolation the critical temperature of the small gap is 10 $K$ in the $ab$ plane and 14.5 $K$ in the $c$ direction. The absolute values of the gaps are $Delta_0^{ab}=2.16$ $meV$ and $Delta_0^c=1.94$ $meV$. For the large gaps the critical temperature coincides with the bulk $T_c$, $T_c^{bulk}=16.8$ $K$, and their absolute values are very close, being about 3 $meV$ in both orientations. In the $c$ direction the contributions to the conductivity from the small and the large gaps remain practically identical up to $10 div 11$ $K$. In the $ab$ plane the contribution from the small gap is much smaller and decreases rapidly as a temperature rises.
In strong-coupling superconductors with a short electron mean free path the self-energy effects in the superconducting order parameter play a major role in the phonon manifestation of the point-contact spectra at the above-gap energies. We derive asy
We have investigated the intermediate valence narrow-gap semiconductor SmB6 at low temperatures using both conventional spear-anvil type point contacts as well as mechanically controllable break junctions. The zero-bias conductance varied between les
Bulk samples of TbFeAsO$_{0.9}$F$_{0.1}$ (T$_{c}$(on) = 50K) were measured by point contact Andreev reflection spectroscopy. The spectra show unambiguous evidence for multiple gap-like features plus the presence of high bias shoulders. By measuring t
Systematic studies of the NdFeAsOF superconducting energy gap via the point-contact Andreev-reflection (PCAR) spectroscopy are presented. The PCAR conductance spectra show at low temperatures a pair of gap-like peaks at about 4 - 7 mV indicating the
The isovalent-substituted iron pnictide compound SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ exhibits multiple evidence for nodal superconductivity via various experimental probes, such as the penetration depth, nuclear magnetic resonance and specific heat m