ﻻ يوجد ملخص باللغة العربية
We investigate static and dynamical ground-state properties of the two-impurity Anderson model at half filling in the limit of vanishing impurity separation using the dynamical density-matrix renormalization group method. In the weak-coupling regime, we find a quantum phase transition as function of inter-impurity hopping driven by the charge degrees of freedom. For large values of the local Coulomb repulsion, the transition is driven instead by a competition between local and non-local magnetic correlations. We find evidence that, in contrast to the usual phenomenological picture, it seems to be the bare effective exchange interactions which trigger the observed transition.
We study the zero-bandwidth limit of the two-impurity Anderson model in an antiferromagnetic (AF) metal. We calculate, for different values of the model parameters, the lowest excitation energy, the magnetic correlation $<mathbf{S}_{1}mathbf{S}_{2}>$
We study the two-impurity Anderson model on finite chains using numerical techniques. We discuss the departure of magnetic correlations as a function of the interimpurity distance from a pure 2k_F oscillation due to open boundary conditions. We obser
We study Gutzwiller-correlated wave functions as variational ground states for the two-impurity Anderson model (TIAM) at particle-hole symmetry as a function of the impurity separation ${bf R}$. Our variational state is obtained by applying the Gutzw
We show that the RKKY interaction in the two-impurity Anderson model comprise two contributions: a ferromagnetic part stemming from the symmetrized hybridization functions and an anti-ferromagnetic part. We demonstrate that this anti-ferromagnetic co
A central feature of the Periodic Anderson Model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization $V$, and singlet formation at large $V