ترغب بنشر مسار تعليمي؟ اضغط هنا

Valence and magnetic ordering in intermediate valence compounds : TmSe versus SmB6

80   0   0.0 ( 0 )
 نشر من قبل Julien Derr
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intermediate valent systems TmSe and SmB6 have been investigated up to 16 and 18 GPa by ac microcalorimetry with a pressure (p) tuning realized in situ at low temperature. For TmSe, the transition from an antiferromagnetic insulator for p<3 GPa to an antiferromagnetic metal at higher pressure has been confirmed. A drastic change in the p variation of the Neel temperature (Tn) is observed at 3 GPa. In the metallic phase (p>3 GPa), Tn is found to increase linearly with p. A similar linear p increase of Tn is observed for the quasitrivalent compound TmS which is at ambiant pressure equivalent to TmSe at p=7 GPa. In the case of SmB6 long range magnetism has been detected above p=8 GPa, i.e. at a pressure slightly higher than the pressure of the insulator to metal transition. However a homogeneous magnetic phase occurs only above 10 GPa. The magnetic and electronic properties are related to the renormalization of the 4f wavefunction either to the divalent or the trivalent configurations. As observed in SmS, long range magnetism in SmB6 occurs already far below the pressure where a trivalent Sm3+ state will be reached. It seems possible, to describe roughly the physical properties of the intermediate valence equilibrium by assuming formulas for the Kondo lattice temperature depending on the valence configuration. Comparison is also made with the appearance of long range magnetism in cerium and ytterbium heavy fermion compounds.



قيم البحث

اقرأ أيضاً

We report on the study of the response to high pressures of the electronic and magnetic properties of several Sm-based compounds, which span at ambient pressure the whole range of stable charge states between the divalent and the trivalent. Our nucle ar forward scattering of synchrotron radiation and specific heat investigations show that in both golden SmS and SmB6 the pressure-induced insulator to metal transitions (at 2 and about 4-7 GPa, respectively) are associated with the onset of long-range magnetic order, stable up to at least 19 and 26 GPa, respectively. This long-range magnetic order, which is characteristic of Sm(3+), appears already for a Sm valence near 2.7. Contrary to these compounds, metallic Sm, which is trivalent at ambient pressure, undergoes a series of pressure-induced structural phase transitions which are associated with a progressive decrease of the ordered 4f moment.
Samarium hexaboride (SmB6), which lies in the mixed valence regime in the Anderson model, has been predicted to possess topologically protected surface states. The intensive investigations on SmB6 have brought up the long standing questions about the discrepancy between the surface and bulk electronic properties in rare-earth compounds in general. Here, we investigate and eventually clarify this discrepancy in the particular case of SmB6 by the photoemission core-level spectra. We focus on the change in both Sm and B states depending on time, temperature, probing depth, and surface termination on the cleaved (100) surface. Our spectra show that the unusual time-dependent change in the Sm valence occurs within a period of hours, which is not related to the adsorption of residual gases. Moreover, we observe a reduction of the surface feature in the B and Sm states on the same timescale accompanied by the formation of a subsurface region. Thus, it indicates the relatively slow charge redistribution between the surface and subsurface regions. Our findings demonstrate that the f states is strongly involved in the surface relaxation.
The novel ternary compound CeCo$_9$Si$_4$ has been studied by means of specific heat, magnetisation, and transport measurements. Single crystal X-ray Rietveld refinements reveal a fully ordered distribution of Ce, Co and Si atoms with the tetragonal space group I4/mcm isostructural with other RCo9Si4. The smaller lattice constants of CeCo9Si4 in comparison with the trend established by other RCo9Si4 is indicative for intermediate valence of cerium. While RCo9Si4 with R= Pr, .. Tb, and Y show ferromagnetism and LaCo9Si4 is nearly ferromagnetic, CeCo9Si4 remains paramagnetic even in external fields as large as 40 T, though its electronic specific heat coefficient (g~190 mJ/molK^2) is of similar magnitude as that of metamagnetic LaCo9Si4 and weakly ferromagnetic YCo9Si4.
The low-temperature electron spin resonance (ESR) spectra and the static magnetization data obtained for the stoichiometric single crystals of $beta$-Na$_{0.33}$V$_2$O$_5$ indicate that this quasi-one-dimensional mixed valence (V4+/V5+) compound demo nstrates at $T_N=22$ K the phase transition into the canted antiferromagnetically ordered state. The spontaneous magnetization of $3.4times 10^{-3}$ $mu_B$ per V$^{4+}$ ion was found to be oriented along the two-fold $b$ axis of the monoclinic structure, the vector of antiferromagnetism is aligned with the $a$ axis and the Dzyaloshinsky vector is parallel to the $c$-axis. The experimental data were successfully described in the frame of the macroscopic spin dynamics and the following values for the macroscopic parameters of the spin system were obtained: the Dzyaloshinsky field $H_D=6$ kOe, the energy gaps of two branches of the spin wave spectrum $Delta_1=48$ GHz and $Delta_2=24$ GHz.
Unusual phases and phase transitions are seen at the magnetic-nonmagnetic boundary in Ce, Eu and Yb-based compounds. EuNi$_2$P$_{2}$ is a very unusual valence fluctuating Eu system, because at low temperatures the Eu valence stays close to 2.5 instea d of approaching an integer value. Eu valence and thus the magnetic property in this system can be tuned by Ge substitution in P site as EuNi$_2$Ge$_{2}$ is known to exhibit antiferromagnetc (AFM) ordering of divalent Eu moments with $T_N$ = 30 K. We have grown EuNi$_2$(P$_{1-x}$Ge$_x$)$_2$ (0.0 $leq$ $x$ $leq$ 0.5) single crystals and studied their magnetic, thermodynamic and transport properties. Increasing Ge doping to $x >$ 0.4 results in a well-defined AFM ordered state with $T_N$ = 12 K for $x$ = 0.5. Moreover, the reduced value of magnetic entropy for $x$ = 0.5 at $T_N$ suggests the presence of valance fluctuation/ Kondo effect in this compound. Interestingly, the specific heat exhibits an enhanced Sommerfeld coefficient upon Ge doping. Subsequently, electronic structure calculations lead to a non-integral valence in EuNi$_2$P$_{2}$ but a stable divalent Eu state in EuNi$_2$Ge$_{2}$ which is in good agreement with experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا