ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity mediated by a soft phonon mode: specific heat, resistivity, thermal expansion and magnetization of YB6

103   0   0.0 ( 0 )
 نشر من قبل Rolf Lortz Dr.
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superconductor YB6 has the second highest critical temperature Tc among the boride family MBn. We report measurements of the specific heat, resistivity, magnetic susceptibility and thermal expansion from 2 to 300 K, using a single crystal with Tc = 7.2 K. The superconducting gap is characteristic of medium-strong coupling. The specific heat, resistivity and expansivity curves are deconvolved to yield approximations of the phonon density of states, the spectral electron-phonon scattering function and the phonon density of states weighted by the frequency-dependent Grueneisen parameter respectively. Lattice vibrations extend to high frequencies >100 meV, but a dominant Einstein-like mode at ~8 meV, associated with the vibrations of yttrium ions in oversized boron cages, appears to provide most of the superconducting coupling and gives rise to an unusual temperature behavior of several observable quantities. A surface critical field Hc3 is also observed.



قيم البحث

اقرأ أيضاً

468 - Warren E. Pickett 2006
If history teaches us anything, it is that the next breakthrough in superconductivity will not be the result of surveying the history of past breakthroughs, as they have almost always been a matter of serendipity resulting from undirected exploration into new materials. Still, there is reason to reflect on recent advances, work toward higher T_c of even an incremental nature, and recognize that it is important to explore avenues currently believed to be unpromising even as we attempt to be rational. In this paper we look at two remarkable new unusually high temperature superconductors (UHTS), MgB2 with Tc=40 K and (in less detail) high pressure Li with Tc=20 K, with the aim of reducing their unexpected achievements to a simple and clear understanding. We also consider briefly other UHTS systems that provide still unresolved puzzles; these materials include mostly layered structures, and several with strongly bonded C-C or B-C substructures. What may be possible in phonon-coupled superconductivity is reconsidered in the light of the discussion.
We investigate the effects of strain on superconductivity with particular reference to SrTiO$_3$. Assuming that a ferroelectric mode that softens under tensile strain is responsible for the coupling, an increase in the critical temperature and range of carrier densities for superconductivity is predicted, while the peak of the superconducting dome shifts towards lower carrier densities. Using a Ginzburg-Landau approach in 2D, we find a linear dependence of the critical temperature on strain: if the couplings between the order parameter and strains in different directions differ while their sum is fixed, different behaviours under uniaxial and biaxial (uniform) strain can be understood.
Recent experiments have tuned the monolayer 1T-WTe2 to be superconducting by electrostatic gating. Here, we theoretically study the phonon-mediated superconductivity in monolayer 1T-WTe2 via charge doping. We reveal that the emergence of soft-mode ph onons with specific momentum is crucial to give rise to the superconductivity in electron-doping regime, whereas no such soft-mode phonons and no superconductivity emerge in hole-doping regime. We also find a superconducting dome, which can be attributed to the change of Fermi surface nesting condition as electron doping. By taking into account the experimentally established strong anisotropy of temperature-dependent upper critical field H_{c2} between the in-plane and out-of-plane directions, we show that the superconducting state probably has the unconventional equal-spin-triplet pairing in A_{u} channel of C_{2h} point group. Our studies provide a promising understanding to the doping dependent superconductivity and strong anisotropy of H_{c2} in monolayer 1T-WTe2.
Unconventional superconductivity is commonly linked to electronic pairing mechanisms, since it is believed that the conventional electron-phonon interaction (EPI) cannot cause sign-changing superconducting gap symmetries. Here, we show that this comm on understanding needs to be revised when one considers a more elaborate theory of electron-phonon superconductivity beyond standard approximations. We selfconsistently solve the full-bandwidth, anisotropic Eliashberg equations including vertex corrections beyond Migdals approximation assuming the usual isotropic EPI for cuprate, Fe-based and heavy-fermion superconductors with nested Fermi surfaces. In case of the high-$T_c$ cuprates we find a $d$-wave order parameter, as well as a nematic state upon increased doping. For Fe-based superconductors, we obtain $s_{pm}$ gap symmetry, while for heavy-fermion CeCoIn$_5$ we find unconventional $d$-wave pairing. These results provide a proof-of-concept that EPI cannot be excluded as a mediator of unconventional and of high-$T_c$ superconductivity.
We have grown single crystals of EuFe2As2 and investigated its electrical transport and thermodynamic properties. Electrical resistivity and specific heat measurements clearly establish the intrinsic nature of magnetic phase transitions at 20 K and 1 95 K. While the high temperature phase transition is associated with the itinerant moment of Fe, the low temperature phase transition is due to magnetic order of localized Eu-moments. Band structure calculations point out a very close similarity of the electronic structure with SrFe2As2. Magnetically, the Eu and Fe2As2 sublattice are nearly de-coupled.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا