The two- to three-dimensional growth transition in the InAs/GaAs(001) heterostructure has been investigated by atomic force microscopy. The kinetics of the density of three dimensional quantum dots evidences two transition thresholds at 1.45 and 1.59 ML of InAs coverage, corresponding to two separate families, small and large. Based on the scaling analysis, such families are characterized by different mechanisms of aggregation, involving the change of the critical nucleus size. Remarkably, the small ones give rise to a wealth of monomers through the erosion of the step edges, favoring the explosive nucleation of the large ones.