ترغب بنشر مسار تعليمي؟ اضغط هنا

How kinetics drives the two- to three-dimensional transition in semiconductor strained heterostructures: the case of InAs/GaAs(001)

53   0   0.0 ( 0 )
 نشر من قبل Fabrizio Arciprete
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two- to three-dimensional growth transition in the InAs/GaAs(001) heterostructure has been investigated by atomic force microscopy. The kinetics of the density of three dimensional quantum dots evidences two transition thresholds at 1.45 and 1.59 ML of InAs coverage, corresponding to two separate families, small and large. Based on the scaling analysis, such families are characterized by different mechanisms of aggregation, involving the change of the critical nucleus size. Remarkably, the small ones give rise to a wealth of monomers through the erosion of the step edges, favoring the explosive nucleation of the large ones.



قيم البحث

اقرأ أيضاً

Mulheran and Blackman have provided a simple and clear explanation of the scale invariance of the island size distribution at the early stage of film growth [Phil. Mag. Lett. 72, 55 (1995)]. Their theory is centered on the concept of capture zone pro perly identified by Voronoi cell. Here we substantiate experimentally their theory by studying the scale invariance of InAs quantum dots (QDs) forming on GaAs(001) substrate. In particular, we show that the volume distributions of QDs well overlap the corrisponding experimental distributions of the Voronoi-cell areas. The interplay between the experimental data and the numerical simulations allowed us to determine the spatial correlation length among QDs.
Ohmic contacts to a two-dimensional electron gas (2DEG) in GaAs/AlGaAs heterostructures are often realized by annealing of AuGe/Ni/Au that is deposited on its surface. We studied how the quality of this type of ohmic contact depends on the annealing time and temperature, and how optimal parameters depend on the depth of the 2DEG below the surface. Combined with transmission electron microscopy and energy-dispersive X-ray spectrometry studies of the annealed contacts, our results allow for identifying the annealing mechanism and proposing a model that can predict optimal annealing parameters for a certain heterostructure.
We report the epitaxial growth of CdCr2Se4, an n-type ferromagnetic semiconductor, on both GaAs and GaP(001) substrates, and describe the structural, magnetic and electronic properties. Magnetometry data confirm ferromagnetic order with a Curie tempe rature of 130 K, as in the bulk material. The magnetization exhibits hysteretic behavior with significant remanence, and an in-plane easy axis with a coercive field of ~125 Oe. Temperature dependent transport data show that the films are semiconducting in character and n-type as grown, with room temperature carrier concentrations of n ~ 1 x 10^18 cm-3.
We develop a generalized theory for the scattering process produced by interface roughness on charge carriers and which is suitable for any semiconductor heterostructure. By exploiting our experimental insights into the three-dimensional atomic lands cape obtained on Ge/GeSi heterointerfaces obtained by atom probe tomography, we have been able to define the full set of interface parameters relevant to the scattering potential, including both the in-plane and axial correlation inside real diffuse interfaces. Our experimental findings indicate a partial coherence of the interface roughness along the growth direction within the interfaces. We show that it is necessary to include this feature, previously neglected by theoretical models, when heterointerfaces characterized by finite interface widths are taken into consideration.
Studies on oxide quasi-two dimensional electron gas (q2DEG) have been a playground for the discovery of novel and sometimes unexpected phenomena, like the reported magnetism at the surface and at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ non- magnetic materials. However, magnetism in this system is weak and there are evidences of a not intrinsic origin. Here, by using in-situ high-resolution angle resolved photoemission we demonstrate that ferromagnetic EuTiO$_{3}$, the magnetic counterpart of SrTiO$_{3}$ in the bulk, hosts a q2DEG at its (001) surface. This is confirmed by density functional theory calculations with Hubbard U terms in the presence of oxygen divacancies in various configurations, all of them leading to a spin-polarized q2DEG related to the ferromagnetic order of Eu-4f magnetic moments. The results suggest EuTiO$_{3}$(001) as a new material platform for oxide q2DEGs, characterized by broken inversion and time reversal symmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا