ﻻ يوجد ملخص باللغة العربية
A multi-component electron model on a lattice is constructed whose ground state exhibits a spontaneous ordering which follows the rule of map-coloring used in the solution of the four color problem. The number of components is determined by the Euler characteristics of a certain surface into which the lattice is embedded. Combining the concept of chromatic polynomials with the Heawood-Ringel-Youngs theorem, we derive an index theorem relating the degeneracy of the ground state with a hidden topology of the lattice. The system exhibits coloring transition and hidden-topological structure transition. The coloring phase exhibits a topological order.
A simple physical realization of an integer quantum Hall state of interacting two dimensional bosons is provided. This is an example of a symmetry-protected topological (SPT) phase which is a generalization of the concept of topological insulators to
A subtle relation between Quantum Hall physics and the phenomenon of pairing is unveiled. By use of second quantization, we establish a connection between (i) a broad class of rotationally symmetric two-body interactions within the lowest Landau leve
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is inve
We present a general approach for the solution of the three-body problem for a general interaction, and apply it to the case of the Coulomb interaction. This approach is exact, simple and fast. It makes use of integral equations derived from the cons
The three-box problem is a gedankenexperiment designed to elucidate some interesting features of quantum measurement and locality. A particle is prepared in a particular superposition of three boxes, and later found in a different (but nonorthogonal)