ﻻ يوجد ملخص باللغة العربية
We study interface thermal resistance (ITR) in a system consisting of two dissimilar anharmonic lattices exemplified by Fermi-Pasta-Ulam (FPU) model and Frenkel-Kontorova (FK) model. It is found that the ITR is asymmetric, namely, it depends on how the temperature gradient is applied. The dependence of the ITR on the coupling constant, temperature, temperature difference, and system size are studied. Possible applications in nanoscale heat management and control are discussed.
We consider an Erdos-Renyi random graph consisting of N vertices connected by randomly and independently drawing an edge between every pair of them with probability c/N so that at N->infinity one obtains a graph of finite mean degree c. In this regim
We study thermal properties of one dimensional(1D) harmonic and anharmonic lattices with mass gradient. It is found that the temperature gradient can be built up in the 1D harmonic lattice with mass gradient due to the existence of gradons. The heat
An optimization algorithm is presented which consists of cyclically heating and quenching by Metropolis and local search procedures, respectively. It works particularly well when it is applied to an archive of samples instead of to a single one. We d
We study numerically the depinning transition of driven elastic interfaces in a random-periodic medium with localized periodic-correlation peaks in the direction of motion. The analysis of the moving interface geometry reveals the existence of severa
We employ a functional renormalization group to study interfaces in the presence of a pinning potential in $d=4-epsilon$ dimensions. In contrast to a previous approach [D.S. Fisher, Phys. Rev. Lett. {bf 56}, 1964 (1986)] we use a soft-cutoff scheme.