ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-waves in antiferromagnetic single crystal LiFePO$_4$

143   0   0.0 ( 0 )
 نشر من قبل David Vaknin
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-wave dispersions in the antiferromagnetic state of single crystal LiFePO$_4$ were determined by inelastic neutron scattering measurements. The dispersion curves measured from the (010) reflection along both {it a}$^ast$ and {it b}$^ast$ reciprocal-space directions reflect the anisotropic coupling of the layered Fe$^{2+}$ (S = 2) spin-system. The spin-wave dispersion curves were theoretically modeled using linear spin-wave theory by including in the spin-Hamiltonian in-plane nearest- and next-nearest-neighbor interactions ({it J}$_1$ and {it J}$_2$), inter-plane nearest-neighbor interactions ({it J}$_bot$) and a single-ion anisotropy ({it D}). A weak (010) magnetic peak was observed in elastic neutron scattering studies of the same crystal indicating that the ground state of the staggered iron moments is not along (010) direction, as previously reported from polycrystalline samples studies, but slightly rotated away from this axis.



قيم البحث

اقرأ أيضاً

64 - J. Werner , C. Neef , C. Koo 2021
Low-energy magnon excitations in magnetoelectric LiFePO$_4$ have been investigated by high-frequency high-field electron spin resonance spectroscopy in magnetic fields up to B = 58 T and frequencies up to f = 745 GHz. For magnetic fields applied alon g the easy magnetic axis, the excitation gap softens and vanishes at the spin-flop field of BSF = 32 T before hardening again at higher fields. In addition, for B smaller than BSF we observe a resonance mode assigned to excitations due to Dzyaloshinskii-Moriya (DM)-interactions, thereby evidencing sizable DM interaction of approx 150 micro eV in LiFePO4. Both the magnetisation and the excitations up to high magnetic fields are described in terms of a mean-field theory model which extends recent zero field inelastic neutron scattering results. Our results imply that magnetic interactions as well as magnetic anisotropy have a sizable quadratic field dependence which we attribute to significant magnetostriction.
In this paper, the magnetic and transport properties were systematically studied for EuAg$_4$As$_2$ single crystals, crystallizing in a centrosymmetric trigonal CaCu$_4$P$_2$ type structure. It was confirmed that two magnetic transitions occur at $te xtit{T}$$_{N1}$ = 10 K and $textit{T}$$_{N2}$ = 15 K, respectively. With the increasing field, the two transitions are noticeably driven to lower temperature. At low temperatures, applying a magnetic field in the $textit{ab}$ plane induces two successive metamagnetic transitions. For both $textit{H}$ $parallel$ $textit{ab}$ and $textit{H}$ $parallel$ $textit{c}$, EuAg$_4$As$_2$ shows a positive, unexpected large magnetoresistance (up to 202%) at low fields below 10 K, and a large negative magnetoresistance (up to -78%) at high fields/intermediate temperatures. Such anomalous field dependence of magnetoresistance may have potential application in the future magnetic sensors. Finally, the magnetic phase diagrams of EuAg$_{4}$As$_{2}$ were constructed for both $textit{H}$ $parallel$ $textit{ab}$ and $textit{H}$ $parallel$ $textit{c}$.
We present a combination of first-principles and experimental results regarding the structural and magnetic properties of olivine-type LiFePO$_4$ under pressure. Our investigations indicate that the starting $Pbnm$ phase of LiFePO$_4$ persists up to 70 GPa. Further compression leads to an isostructural transition in the pressure range of ~70-75 GPa, inconsistent with a former theoretical study. Considering our first-principles prediction for a high-spin to low-spin transition of Fe$^{2+}$ close to 72 GPa, we attribute the experimentally observed isostructural transition to a change on the spin state of Fe$^{2+}$ in LiFePO$_4$. Compared to relevant Fe-bearing minerals, LiFePO$_4$ exhibits the largest onset pressure for a pressure-induced spin state transition.
We study theoretically the influence of the temperature and disorder on the spin wave spectrum of the magnonic crystal Fe$_{1-c}$Co$_{c}$. Our formalism is based on the analysis of a Heisenberg Hamiltonian by means of the wave vector and frequency de pendent transverse magnetic susceptibility. The exchange integrals entering the model are obtained from the emph{ab initio} magnetic force theorem. The coherent potential approximation is employed to treat the disorder and random phase approximation in order to account for the softening of the magnon spectrum at finite temperatures. The alloy turns out to exhibit many advantageous properties for spintronic applications. Apart from high Curie temperature, its magnonic bandgap remains stable at elevated temperatures and is largely unaffected by the disorder. We pay particular attention to the attenuation of magnons introduced by the alloying. The damping turns out to be a non-monotonic function of the impurity concentration due to the non-trivial evolution of the value of exchange integrals with the Co concentration. The disorder induced damping of magnons is estimated to be much smaller than their Landau damping.
140 - A. Yamaguchi , K. Motoi , 2008
The rectifying effect of radio-frequency (RF) current is highly sensitive in terms of the spatial spin distribution and dynamics. It emerged that an additional spin wave mode was stimulated by the direct-current (DC) current and that this spin wave w as detectable via rectification of the RF current. A phenomenological model to describe the time-dependent anisotropic magnetoresistance or time-dependent planer Hall effect is proposed and found to correlate well to the experimental results. The nonlinear spin dynamics accompanying additional spin waves are studied as functions of the RF and DC currents, the external magnetic field, and the applied field direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا