ترغب بنشر مسار تعليمي؟ اضغط هنا

Thin films of metallic carbon nanotubes and their optical spectra

136   0   0.0 ( 0 )
 نشر من قبل Ralph Krupke
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that separating metallic from semiconducting carbon nanotubes by dielectrophoresis is developing towards a bulk separation method, which allows for the first time to produce thin films of only metallic single-walled carbon nanotubes and to measure their optical absorption spectra. The data proofs that the selectivity of the separation scheme is independent from the nanotube diameter.



قيم البحث

اقرأ أيضاً

In this work, we studied amorphous carbon ($a$-C) thin films deposited using direct current (dc) and high power impulse magnetron sputtering (HiPIMS) techniques. The microstructure and electronic properties reveal subtle differences in $a$-C thin fil ms deposited by two techniques. While, films deposited with dcMS have a smooth texture typically found in $a$-C thin films, those deposited with HiPIMS consist of dense hillocks surrounded by a porous microstructure. The density of $a$-C thin films is a decisive parameter to judge their quality. Often, x-ray reflectivity (XRR) has been used to measure the density of carbon thin films. From the present work, we find that determination of density of carbon thin films, specially those with a thickness of few tens of nm, may not be accurate with XRR due to a poor scattering contrast between the film and substrate. By utilizing neutron reflectivity (NR) in the time of flight mode, a technique not commonly used for carbon thin films, we could accurately measure differences in the densities of $a$-C thin films deposited using dcMS and HiPIMS.
The linear polarizability absorption spectra of the double-walled carbon nanotubes (DWNTs) have been calculated by using the tight-binding (TB) model and sum-over-state (SOS) method, supplemented by the first principles CASTEP calculations. It is fou nd that the chiral symmetries of both outer and inner tubes in the DWNTs can always be identified distinctly by the characteristic peaks in the absorption spectra of the DWNTs, no matter what kind of the outer tube is, offering a powerful experimental tool to measure precisely the chiral angle of the inner tube of a DWNT.
We present results for the optical absorption spectra of small-diameter single-wall carbon and boron nitride nanotubes obtained by {it ab initio} calculations in the framework of time-dependent density functional theory. We compare the results with t hose obtained for the corresponding layered structures, i.e. the graphene and hexagonal BN sheets. In particular, we focus on the role of depolarization effects, anisotropies and interactions in the excited states. We show that already the random phase approximation reproduces well the main features of the spectra when crystal local field effects are correctly included, and discuss to which extent the calculations can be further simplified by extrapolating results obtained for the layered systems to results expected for the tubes. The present results are relevant for the interpretation of data obtained by recent experimental tools for nanotube characterization such as optical and fluorescence spectroscopies as well as polarized resonant Raman scattering spectroscopy. We also address electron energy loss spectra in the small-q momentum transfer limit. In this case, the interlayer and intertube interactions play an enhanced role with respect to optical spectroscopy.
The electronic transport properties of a metallic carbon nanotube with the five-seven disclination pair characterized by a lattice distortion vector are investigated. The influence of the disclination dipole includes induced curvature and mixing of t wo sublattices. Both these factors are taken into account via a self-consistent perturbation approach. The conductance and the Fano factor are calculated within the transfer-matrix technique. PACS: 73.63.Fg, 72.80.Rj, 72.10.Fk
The circular dichroism (CD) spectra of single-wall carbon nanotubes are calculated using a dipole approximation. The calculated CD spectra show features that allow us to distinguish between nanotubes with different angles of chirality, and diameters. These results provide theoretical support for the quantification of chirality and its measurement, using the CD lineshapes of chiral nanotubes. It is expected that this information would be useful to motivate further experimental studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا