ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface relaxation of lyotropic lamellar phases

63   0   0.0 ( 0 )
 نشر من قبل Haim Diamant
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the relaxation modes of an interface between a lyotropic lamellar phase and a gas or a simple liquid. The response is found to be qualitatively different from those of both simple liquids and single-component smectic-A liquid crystals. At low rates it is governed by a non-inertial, diffusive mode whose decay rate increases quadratically with wavenumber, $|omega|=Aq^2$. The coefficient $A$ depends on the restoring forces of surface tension, compressibility and bending, while the dissipation is dominated by the so-called slip mechanism, i.e, relative motion of the two components of the phase parallel to the lamellae. This surface mode has a large penetration depth which, for sterically stabilised phases, is of order $(dq^2)^{-1}$, where $d$ is the microscopic lamellar spacing.



قيم البحث

اقرأ أيضاً

We use mesoscale numerical simulations to investigate the unsteady dynamics of a single red blood cell (RBC) subjected to an external mechanical load. We carry out a detailed comparison between the {it loading} (L) dynamics, following the imposition of the mechanical load on the RBC at rest, and the {it relaxation} (R) dynamics, allowing the RBC to relax to its original shape after the sudden arrest of the mechanical load. Such a comparison is carried out by analyzing the characteristic times of the two corresponding dynamics, i.e., $t_L$ and $t_R$. When the intensity of the mechanical load is small enough, the two kinds of dynamics are {it symmetrical} ($t_L approx t_R$) and independent of the typology of mechanical load (intrinsic dynamics); otherwise, in marked contrast, an {it asymmetry} is found, wherein the loading dynamics is typically faster than the relaxation one. This asymmetry manifests itself with non-universal characteristics, e.g., dependency on the applied load and/or on the viscoelastic properties of the RBC membrane. To deepen such a non-universal behaviour, we consider the viscosity of the erythrocyte membrane as a variable parameter and focus on three different typologies of mechanical load (mechanical stretching, shear flow, elongational flow): this allows to clarify how non-universality builds up in terms of the deformation and rotational contributions induced by the mechanical load on the membrane. Finally, we also investigate the effect of the elastic shear modulus on the characteristic times $t_L$ and $t_R$. Our results provide crucial and quantitative information on the unsteady dynamics of RBC and its membrane response to the imposition/cessation of external mechanical loads.
We propose a theoretical framework to calculate capillary stresses in complex mesoporous materials, such as moist sand, nanoporous hydrates, and drying colloidal films. Molecular simulations are mapped onto a phase-field model of the liquid-vapor mix ture, whose inhomogeneous stress tensor is integrated over Voronoi polyhedra in order to calculate equal and opposite forces between each pair of neighboring grains. The method is illustrated by simulations of moisture-induced forces in small clusters and random packings of spherical grains using lattice-gas Density Functional Theory. For a nano-granular model of cement hydrates, this approach reproduces the hysteretic water sorption/desorption isotherms and predicts drying shrinkage strain isotherm in good agreement with experiments. We show that capillary stress is an effective mechanism for internal stress relaxation in colloidal random packings, which contributes to the extraordinary durability of cement paste.
We study theoretically the surface response of a semi-infinite viscoelastic polymer network using the two-fluid model. We focus on the overdamped limit and on the effect of the networks intrinsic length scales. We calculate the decay rate of slow sur face fluctuations, and the surface displacement in response to a localized force. Deviations from the large-scale continuum response are found at length scales much larger than the networks mesh size. We discuss implications for surface scattering and microrheology. We provide closed-form expressions that can be used for surface microrheology -- the extraction of viscoelastic moduli and intrinsic length scales from the motions of tracer particles lying on the surface without doping the bulk material.
82 - Kunlin Ma , Nimish Pujara , 2021
Microswimmers (planktonic microorganisms or artificial active particles) immersed in a fluid interact with the ambient flow, altering their trajectories. By modelling anisotropic microswimmers as spheroidal bodies with an intrinsic swimming velocity that supplements advection and reorientation by the flow, we investigate how shape and swimming affect the trajectories of microswimmers in surface gravity waves. The coupling between flow-induced reorientations and swimming introduces a shape dependency to the vertical transport. We show that each trajectory is bounded by critical planes in the position-orientation phase space that depend only on the shape. We also give explicit solutions to these trajectories and determine whether microswimmers that begin within the water column eventually hit the free surface. We find that it is possible for microswimmers to be initially swimming downwards, but to recover and head back to the surface. For microswimmers that are initially randomly oriented, the fraction that hit the free surface is a strong function of shape and starting depth, and a weak function of swimming speed.
Granular fronts are a common yet unexplained phenomenon emerging during the gravity driven free-surface flow of concentrated suspensions. They are usually believed to be the result of fluid convection in combination with particle size segregation. Ho wever, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a visco-plastic fluid obtained from a kaolin-water dispersion, with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, like fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to segregate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the material properties and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a Lattice-Boltzmann Method, and the particles are explicitly represented using the Discrete Element Method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time-scale of particle settling with the one of particle recirculation, a non-dimensional number is defined, and is found to be effective in predicting the formation of a granular front.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا