ترغب بنشر مسار تعليمي؟ اضغط هنا

2D Kagome Ordering in the 3D Frustrated Spinel Li2Mn2O4

94   0   0.0 ( 0 )
 نشر من قبل Chris Wiebe
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

muSR experiments on the geometrically frustrated spinel oxide, Li2Mn2O4, show the development of spin correlations over a range of length scales with decreasing temperature. Increased relaxation below 150 K is consistent with the onset of spin correlations. Below 50 K, spin order on a length scale, which is long range for the muSR probe, appears abruptly in temperature, consistent with prior neutron diffraction results. The oscillations in the zero field asymmetry are analyzed using a three frequency model. By locating the muon site this is shown to be consistent with the unexpected 2D q = root 3 x root 3 structure on the Kagome planes proposed originally from neutron data. Longitudinal field data demonstrate that some spin dynamics persist even at 2 K. Thus, a very complex magnetic ground state, featuring the co-existence of long length scale 2D ordering and significant spin dynamics, is proposed. This is unusual considering the 3D topology of the Mn3+ spins in this material.



قيم البحث

اقرأ أيضاً

We predict that an external field can induce a spin order in highly frustrated classical Heisenberg magnets. We find analytically stabilization of collinear states by thermal fluctuations at a one-third of the saturation field for kagome and garnet l attices and at a half of the saturation field for pyrochlore and frustrated square lattices. This effect is studied numerically for the frustrated square-lattice antiferromagnet by Monte Carlo simulations for classical spins and by exact diagonalization for $S=1/2$. The field induced collinear states have a spin gap and produce magnetization plateaus.
Nuclear magnetic resonance (NMR), neutron diffaction (ND), x-ray diffraction, magnetic susceptibility and specific heat measurements on the frustrated A-site spinel CoAl2O4 compound reveal a collinear antiferromagnetic ordering below Tn = 9.8(2) K. A high quality powder sample characterized by x-ray diffraction that indicates a relatively low Co-Al inversion parameter x = 0.057(20) in (Co1-xAlx)[Al2-xCox]O4, shows a broad maximum around 15 K in magnetic susceptibility and a sharp peak at Tn in heat capacity. The average ordered magnetic moment of Co^2+ (S = 3/2) ions at the A-site is estimated to be 2.4(1) Bohr magneton from NMR and 1.9(5) Bohr magneton from ND which are smaller than the expected value of 3 Bohr magneton for S = 3/2 and g = 2. Antiferromagnetic spin uctuations and correlations in the paramagnetic state are revealed from the magnetic susceptibility, NMR and ND measurements, which are due to spin frustration and site inversion effects in the system. The ND data also show short-range dynamic magnetic ordering that persists to a temperature that is almost twice Tn.
126 - J. Ma , J. H. Lee , S. E. Hahn 2014
The crossover from localized- to itinerant-electron behavior is associated with many intriguing phenomena in condensed-matter physics. In this paper, we investigate the crossover from localized to itinerant regimes in the spinel system Mn$_{1-x}$Co$_ x$V$_2$O$_4$. At low Co doping, orbital order (OO) of the localized electrons on the V3+ ions suppresses magnetic frustration by triggering a tetragonal distortion. With Co doping, electronic itinerancy melts the OO and suppresses the structural phase transition while the reduced spin-lattice coupling produces magnetic frustration. Neutron scattering measurements and first-principles-guided spin models reveal that the non-collinear state at high Co doping is produced by weakened local anisotropy and enhanced Co-V spin interactions.
92 - P. Zajdel , W-Y. Li , W. Van Beek 2017
The crystal and magnetic structures of stoichiometric ZnCr2Se4 have been investigated using synchrotron X-ray and neutron powder diffraction, muon spin relaxation (muSR) and inelastic neutron scattering. Synchrotron X-ray diffraction shows a spin-lat tice distortion from the cubic spinel to a tetragonal I41/amd lattice below TN = 21 K, where powder neutron diffraction confirms the formation of a helical magnetic structure with magnetic moment of 3.04(3) {mu}B at 1.5 K; close to that expected for high-spin Cr3+. MuSR measurements show prominent local spin correlations that are established at temperatures considerably higher (< 100 K) than the onset of long range magnetic order. The stretched exponential nature of the relaxation in the local spin correlation regime suggests a wide distribution of depolarizing fields. Below TN, unusually fast (> 100 {mu}s-1) muon relaxation rates are suggestive of rapid site hopping of the muons in static field. Inelastic neutron scattering measurements show a gapless mode at an incommensurate propagation vector of k = (0 0 0.4648(2)) in the low temperature magnetic ordered phase that extends to 0.8 meV. The dispersion is modelled by a two parameter Hamiltonian, containing ferromagnetic nearest neighbor and antiferromagnetic next nearest neighbor interactions with a Jnnn/Jnn = -0.337.
The ground state of the frustrated A-site magnetic spinel CoAl2O4 has been a controversial issue whether it is a collinear antiferromagnetic ordering or a spiral spin - liquid state, as the ratio of the two competing interactions, J2/J1 lies close to the boundary between these two ground states. Here, we address the magnetic ground state in CoAl2O4 with different amount of Co2+/Al3+ site disorder from the study of magnetoelectric effect and Monte Carlo simulations. CoAl2O4 with low site disorder exhibits linear magnetoelectric effect below the magnetic ordering temperature. With increasing disorder, the magnetoelectric effect is suppressed and the sample with 14% disorder exhibits a spin glass behavior without the magnetoelectric effect. Monte Carlo simulations support the experimental findings and suggest that the site disorder suppresses long - range antiferromagnetic order and induces a spin glass state. Since the linear magnetoelectric effect requires a long - range magnetic ordering, we suggest that the ground state of CoAl2O4 with low site disorder is a collinear antiferromagnet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا